4.5 Composition of Enteral Nutrition: Fibre

Recommendation:

There are insufficient data to support the routine use of fibre (pectin or soy polysaccharides) in enteral feeding formulas in critically ill patients.

Discussion: The committee noted the lack of a treatment effect with wide confidence intervals demonstrated by the 5 studies on soluble fibre and the one study on soy polysaccharides. Cost, feasibility and safety were not a concern.

Values	Definition	Score: 0, 1, 2, 3
Effect size	Magnitude of the absolute risk reduction attributable to the intervention listeda higher score indicates a larger effect size	0 (diarrhea)
Confidence interval	95% confidence interval around the point estimate of the absolute risk reduction, or the pooled estimate (if more than one trial)a higher score indicates a smaller confidence interval	1
Validity	Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised	3
Homogeneity or Reproducibility	Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials	1
Adequacy of control group	Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3)	3
Biological plausibility	Consistent with understanding of mechanistic and previous clinical work (large inconsistencies =1, minimal inconsistencies =2, very consistent =3)	1
Generalizability	Likelihood of trial findings being replicated in other settings (low likelihood i.e. single centre =1, moderate likelihood i.e. multicentre with limited patient population or practice setting =2, high likelihood i.e. multicentre, heterogeneous patients, diverse practice settings =3.	1
Cost	Estimated cost of implementing the intervention listeda higher score indicates a lower cost to implement the intervention in an average ICU	3
Feasible	Ease of implementing the intervention listeda higher score indicates greater ease of implementing the intervention in an average ICU	2
Safety	Estimated probability of avoiding any significant harm that may be associated with the intervention listeda higher score indicates a lower probability of harm	2

4.5 Composition of Enteral Nutrition: Fibre

Question: Do enteral feeds with fibre, compared to standard feeds result in better outcomes in the critically ill adult patient?

Summary of evidence: There were 6 level 2 studies reviewed, 5 looked at the effects of soluble fibres (Schultz 2000: pectin; Spapen 2001, Rushdi 2005 :hydrolyzed guar; Heather 1988 psyllium; Hart 1988: psyllium) and 1 study (Dobb) examined the effects of a formula containing soy polysaccharide (mainly insoluble fibre)

Mortality: Only one study reported mortality and found no difference between the groups.

Infections, LOS: There were no differences found between the groups.

Ventilator days: Not studied as an outcome

Other complications: No differences were seen in diarrhea between the groups receiving the fibre/pectin feeds (Jevity plus or Nepro + pectin) compared with placebo. Only in one study (Spapen), soluble fibre (hydrolyzed guar) was significantly associated with fewer diarrhea days (p < 0.001) and fewer # of patients with diarrhea (RR 0.50, CI 0.27- 0.93). Two studies did not report on the # patients with diarrhea and could not be included in the analysis. When the remaining 3 studies on soluble fibre were aggregated, there was no difference in # of patients with diarrhea between the groups (RR = 0.79, 95% CI 0.43-1.45, p = 0.4) (see figure 1). Soy polysaccharide containing formula (Enrich) had no effect on diarrhea.

Conclusions:

- 1) No differences in diarrhea found between the groups receiving the formula containing soy polysaccharide or standard formula.
- 2) No difference in diarrhea between standard formula and formulas containing soluble fibre.

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis. Level 2 study: If any one of the above characteristics are unfulfilled

Study	Population	Methods Intervention Mortality # (%)† (score)		ity # (%)†	RR (CI)** Infections # (%)‡		s # (%) ‡	RR (CI)**	
1. Hart 1988	ICU patients N = 68	C.Random: not sure ITT: yes Blinding: single (9)	Standard formula (Osmolite HN) + Fybogel vs. Standard formula (Osmolite HN) + placebo	Fybogel NR	Standard NR	NR	Fybogel NR	Standard NR	
2. Dobb 1990	ICU patients N = 91	C.Random: yes ITT: no Blinding: double (10)	Formula with soy polysaccharide (Enrich) vs Standard (Ensure)	Enrich NR	Standard NR	NR	Enrich NR	Standard NR	NR
3. Heather 1991	ICU CCU, general wards(ICU 41/49) Nutritionally compromised N = 49	C.Random: not sure ITT: no Blinding: no (3)	Standard formula (fibre free) + Hydrocil (psyllium) vs. Standard formula (fibre free)	Psyllium NR	Standard NR	NR	Psyllium NR	Standard NR	NR
4. Schultz 2000	Critically ill patients receiving antibiotics N = 80	C.Random: yes ITT: no Blinding: double (10)	(A) Fibre/pectin vs(B) Fibre free/pectin vs(C) Fibre/placebo(D) Fibre free/placebo	NR	NR	NR	NR	NR	NR
5. Spapen 2001	Patients with severe sepsis, septic shock, ventilated N = 35	C.Random: yes ITT: no Blinding: double (11)	Formula with soluble fibre (partially hydrolyzed guar) vs No fibre (standard)	Soluble fibre	Standard 4/12 (33)	0.23 (0.03-1.79)	Soluble fibre 13/13 (100)	Standard 12/12 (100)	NR
6. Rushdi 2005	ICU patients N = 30	C.Random: yes ITT: no Blinding: double (8)	Standard formula (Sandosource) + soluble Guar gum (Benefibre) vs. Fibre-free formula (Propeptide)	Benefibre NR	Standard NR	NR	Benefibre NR	Standard NR	NR

Table 1. Randomized studies evaluating enteral feeds with fibre in critically ill patients

Study	LOS days					Other				RR (CI)**
1. Hart 1988	Fybogel	Standard				Fybogel	Fybogel Standard # Patients with diarrhea 19/35 (54) 19/33 (58)			
	NR	NR				% Diarrhea days 66/287 (23) 68/297 (23)				
2. Dobb 1990	Enrich			Standard		Enri	ch Diarrh	Standar iea	d	
	NR		ľ	١R		16	/45 (36)	13/46 (28)		1.26 (0.69-2.31)
3. Heather 1991	Psyllium NR	Standard				Psyllium Standard Stool consistency 3.29 2.24 Stool frequency			NR	
4. Schultz 2000	Hospital	(A) 33.8 ± 22.1	(B) 22.4 ± 9	(C) 42.8 ± 3.3	(D) 34 ± 14.7	(A) 1/11 (9)	26 Diari (B) 4/11 (36)	2.01 rhea (C) 6/11 (55)	(D) 1/11 (9)	(A)+(B) vs (D)* 2.50 (0.33-18.9)
	ICU	22.1 ± 16.4	17.3 ± 8.2		28 ± 14.6	(/)		0,11 (00)	(/)	(A)+(C) vs (D) *** 3.50 (0.49-25)
5. Spapen 2001	ICU	Soluble fibre Standard 19 (11-51) 17 (10-30)		Soluble fibre Standard # Patients with diarrhea 6/13 (46) 11/12 (92)				0.50 (0.27-0.93)		
						16/148	% Diarrhe	46/146		
6. Rushdi 2005	Benefibre NR			Standard NR		Benefibre 1.(# Liquid sto	2.1	ard	p <0.01

Table 2.Randomized studies evaluating enteral feeds with fibre in critically ill patients

ITT: Intent to treat NR: Not reported CI: Confidence intervals * Compared (A) + (B) to (D) for effect of pectin to placebo *** Compared (A) + (C) to (D) for effect of fibre to placebo

C.Random: Concealed randomization † Presumed ICU mortality unless otherwise specified ‡ Refers to the # of patients with infections unless specified** RR= relative risk

Figure 1.		
Comparison:	01	Soluble fibre vs. standard
Outcome:	01	Diarrhea

Study	Soluble fibre n/N	standard n/N	RR (95%Cl Random)	Weight %	RR (95%Cl Random)	Year	
Hart	19/35	19/33	8	51.5	0.94[0.62,1.44]	1988	
Schultz	5/22	1/11		- 8.0	2.50[0.33,18.87]	2000	
Spapen	6/13	11/12		40.5	0.50[0.27,0.93]	2001	
otal(95%Cl)	30/70	31 / 56	-	100.0	0.79[0.43,1.45]		
est for heterogeneity c	hi-square=4.15 df=2 p=0.13	1					
Test for overall effect z	=-0.76 p=0.4						
		.01	.1 1 10	100			
				standard			

TOPIC: 4.5 Composition of EN: Fibre

Article inclusion log

Criteria for study selection

Type of study: RCT or Meta-analysis

Population: critically ill, ventilated patients (no elective surgery patients)

Intervention: EN

Outcomes: mortality, LOS, QOL, functional recovery, complications, cost. Exclude studies with only biochemical, metabolic or nutritional outcomes.

	Author	Journal	Ι	Ε	Why Rejected
1	Hart	JPEN 1988	\checkmark		
2	Frankenfield	Am J Clin Nutr 1989		\checkmark	Crossover RCT
3	Dobb	Intensive Care Med 1990	\checkmark		
4	Heather	Heart and Lung 1991	\checkmark		
5	Borlase	Surgery, Gyn Obs 1992		\checkmark	Surgery pts
6	Levinson	Anaesth Intensive Care 1993		\checkmark	No clinical outcomes
7	Homann	JPEN 1994		\checkmark	Not ICU pts
8	Khalil	Singapore Med J 1998		\checkmark	Not ICU pts
9	Schultz	Am J Crit Care 2000	\checkmark		
10	Spapen	Clinical Nutrition 2001	\checkmark		
11	Rayes	Nutrition 2002		\checkmark	Surgery pts
12	Rayes	Transplantation 2002		\checkmark	Surgery pts
13	Rushdi	Clin Nutr 2004	\checkmark		
14	Homann	Clin Nutr Suppl 2004		\checkmark	Only 30% pts were ICU patients (acc to author)
15	Yang	World J Gastroenteral 2005		\checkmark	Meta-analysis, Individual studies looked at
16	Schneider	Clin Nutr 2006			Crossover study
17	Fussell	20 th Clinical Congress Abstracts		\checkmark	Surgery pts

I = included, E = excluded

Reference List

- 1. Hart GK, Dobb GJ. Effect of a fecal bulking agent on diarrhea during enteral feeding in the critically ill. JPEN 1988;12(5):465-8.
- 2. Frankenfield DC, Beyer PL. Soy-polysaccharide fiber: effect on diarrhea in tube-fed, headinjured patients. Am J Clin Nutr 1989;50(3):533-8.
- 3. Dobb GJ, Towler SC. Diarrhoea during enteral feeding in the critically ill: a comparison of feeds with and without fibre. Intensive Care Med1990;16(4):252-5.
- 4. Heather DJ, Howell L, Montana M, Howell M, Hill R. Effect of a bulk-forming cathartic on diarrhea in tube-fed patients. Heart Lung. 1991;20(4):409-13.
- 5. Borlase BC, Bell SJ, Lewis E, Swails W, Bistrian BR, Forse A, Blackburn GL. Tolerance to enteral tube feeding diets in hypoalbuminemic critically ill, geriatric patients. Surgery, Gyn Obs 1992;174:181-188.
- 6. Levinson M, Bryce A. Enteral feeding, gastric colonisation and diarrhoea in the critically ill patient: is there a relationship? Anaesth Intensive Care. 1993 Feb;21(1):85-8.
- 7. Homann HH, Kemen M, Fuessenich C, Senkal M, Zumtobel V. Reduction in diarrhea incidence by soluble fiber in patients receiving total or supplemental enteral nutrition. JPEN J Parenter Enteral Nutr 1994;18(6):486-490.
- 8. Khalil L, Ho KH, Png D, Ong CL. The effect of enteral fibre-containing feeds on stool parameters in the post-surgical period. Singapore Med J. 1998 Apr;39(4):156-9.
- 9. Schultz AA, Ashby-Hughes B, Taylor R, Gillis DE, Wilkins M. Effects of pectin on diarrhea in critically ill tube-fed patients receiving antibiotics. Am J Crit Care. 2000;9(6):403-11.
- 10. Spapen H, Diltoer M, Van Malderen C, Opdenacker G, Suys E, Huyghens L. Soluble fiber reduces the incidence of diarrhea in septic patients receiving total enteral nutrition: a prospective, double-blind, randomized, and controlled trial. Clin Nutr. 2001;20(4):301-5.
- 11. Rayes N, Hansen S, Seehofer D, Müller AR, Serke S, Bengmark S, Neuhaus P. Early enteral supply of fiber and Lactobacilli versus conventional nutrition: a controlled trial in patients with major abdominal surgery. Nutrition. 2002 Jul-Aug;18(7-8):609-15.
- 12. Rayes N, Seehofer D, Hansen S, Boucsein K, Müller AR, Serke S, Bengmark S, Neuhaus P. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation. 2002 Jul 15;74(1):123-7.
- 13. Rushdi TA, Pichard C, Khater YH. Control of diarrhea by fiber-enriched diet in ICU patients on enteral nutrition: a prospective randomized controlled trial. Clin Nutr. 2004;23(6):1344-52.

- 14. Homann HH, Senkal M, Kemen M, Lehnhardt M. The beneficial effects of PHGG in enteral nutrition in medical and surgical patients. Clin Nutr Suppl 2004;1:59-62.
- 15. Yang G, Wu XT, Zhou Y, Wang YL. Application of dietary fiber in clinical enteral nutrition: A meta-analysis of randomized controlled trials.j World J Gastroenteral 2005;11(25):3935-3938.
- 16. Schneider SM, Girard-Pipau F, Anty R, van der Linde E et al. Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota. Clin Nutr 2006;25:82-90.
- 17. Fussell ST. The influence of guar gum on diarrhea in critically-ill tube-fed patients. 20th Clinical Congress Abstracts.