2.0 Early vs. Delayed nutrient intake

Recommendation:

Based on 14 level 2 studies, we recommend early enteral nutrition (within 24-48 hours following admission to ICU) in critically ill patients.

Discussion: The committee noted the inconsistent and variable definitions of early enteral nutrition and delayed nutrition, and the considerable heterogeneity in trial designs. Concern was expressed about the safety of early intragastric enteral nutrition given reports of increased harm (from non randomized trials) experienced by patients fed aggressive, early EN (1,2,3). However, given the potentially large treatment effect with respect to reduced mortality and infections, significant improvement in nutritional intake and the minimal cost and feasibility concerns of early enteral nutrition, the committee decided to put forward a recommendation for its use. It was postulated that the treatment effect would be larger in patients with a lower body mass index (BMI), however only 3 studies reported on BMI. Early enteral nutrition, like other interventions i.e. small bowel feeding (see section 5.3) and motility agents (see section 5.2) can be used as a strategy to optimize delivery of enteral nutrition. Based on the studies reviewed, the committee agreed that early enteral nutrition could be defined as "within 24-48 hrs from admission to ICU" and that it be applied to all mechanically ventilated patients presuming patients were adequately resuscitated and hemodynamically stable.

Mentec H, Dupont H, Bocchetti M, et al. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med 2001; 29(10):1955-1961.
 Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef M. Early versus late enteral feeding of mechanically ventilated patients: Results of a clinical trial. JPEN 2002;26:174-181.
 Artinian V, Krayem H, DiGiovine B. Effects of early enteral feeding on the outcome of critically ill mechanically ventilated medical patients. Chest. 2006 Apr;129(4):960-7.

Effect size Magnitude of the absolute risk reduction attributable to the intervention listeda higher score indicates a larger effect size Morta Infect Confidence interval 95% confidence interval around the point estimate of the absolute risk reduction, or the pooled estimate (if more than one trial)a higher score indicates a smaller confidence interval Morta Infect Validity Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised 2 Homogeneity or Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Morta	ore
Infect Confidence interval 95% confidence interval around the point estimate of the absolute risk reduction, or the pooled estimate (if more than one trial)a higher score indicates a smaller confidence interval Morta Infect Validity Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised 2 Homogeneity or Reproducibility Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Morta Infect Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	1, 2 or 3
Confidence interval 95% confidence interval around the point estimate of the absolute risk reduction, or the pooled estimate (if more than one trial)a higher score indicates a smaller confidence interval Morta Infection Validity Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised 2 Homogeneity or Reproducibility Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Morta Infection Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	ortality=3
indicates a smaller confidence interval Infect Validity Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised 2 Homogeneity or Reproducibility Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Mortal Infect Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	fection=2
Validity Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised 2 Homogeneity or Reproducibility Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Morta Infect Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	ortality=1
intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised 2 Homogeneity or Reproducibility Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Morta Infection Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	fection=2
appraised Mortal Homogeneity or Reproducibility Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Mortal Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	
Homogeneity or Reproducibility Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials Mortal Infection Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	
Reproducibility Infec Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2 group 2	
Adequacy of control group Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3) 2	ortality =3
group	fections =1
Biological plausibility Consistent with understanding of mechanistic and previous clinical work (large inconsistencies =1, minimal inconsistencies =2, very consistent 2	
=3)	
Generalizability Likelihood of trial findings being replicated in other settings (low likelihood i.e. single centre =1, moderate likelihood i.e. multicentre with limited 1	
patient population or practice setting =2, high likelihood i.e. multicentre, heterogeneous patients, diverse practice settings =3.	
Low cost Estimated cost of implementing the intervention listeda higher score indicates a lower cost to implement the intervention in an average ICU 2	
Feasible Ease of implementing the intervention listeda higher score indicates greater ease of implementing the intervention in an average ICU 2	
Safety Estimated probability of avoiding any significant harm that may be associated with the intervention listeda higher score indicates a lower probability of harm	

2.0 Early vs. Delayed nutrient intake

Question: Does early enteral nutrition compared to delayed nutrient intake result in better outcomes in the critically ill adult patient?

Summary of evidence: There were 14 randomized controlled trials (level 2 studies) comparing early enteral nutrition vs. delayed nutrient intake (i.e. delayed enteral nutrition, parenteral nutrition or oral diet). In all the trials, except one (started within 72 hrs of injury), enteral nutrition in the intervention group was started within 24-48 hours of admission/resuscitation. There were 8 studies comparing early vs. delayed EN whereas in 6 studies early EN was compared to no EN/IV fluids.

Mortality: When all the studies that looked at the effect of early EN on mortality were aggregated, when compared to delayed nutrient intake, early enteral nutrition was associated with a trend towards a reduction in mortality (RR 0.68 95% CI 0.46,1.01, p = 0.06, no heterogeneity present) (figure 1). In a subgroup analysis, early EN vs. no EN/IV fluids was associated with a trend towards a reduction in mortality (RR 0.62, 95% CI 0.37, 1.05, p = 0.08, no heterogeneity present), whereas early vs. delayed EN had no effect on mortality (RR = 0.77, 95% CI 0.43, 1.38, p = 0.39, no heterogeneity present) (figures 2, 3).

Infections: Nine studies reported on infections and of these only 7 studies reported on the number of patients with infections and when these were aggregated, early enteral nutrition when compared to delayed nutrient intake was associated with a significant reduction in infectious complications (RR 0.76, 95 % confidence intervals 0.59, 0.98, p = 0.04) (figure 4). In a subgroup analysis, early EN vs. no EN/IV fluids was associated with a trend towards a reduction in infections (RR 0.70, 95% CI 0.48, 1.02, p = 0.06, moderate heterogeneity present), whereas early vs. delayed EN had no effect on infections (RR = 0.79, 95% CI 0.5, 1.25, p = 0.31, no heterogeneity present) (figures 5, 6).

LOS and Ventilator days: Thirteen studies looked at LOS (5 reported on ICU LOS only, 3 reported on hospital LOS only and 5 reported on both ICU and hospital LOS). When the results were meta-analyzed, early enteral nutrition had no effect on ICU stay (WMD -0.18, 95% CI -3.32, 2.96, p =0.91) (figure 7) or hospital length of stay (WMD – 0.18, 95% CI - 8.15, 7.80 p = 0.97) (figure 8). A total of 7 studies reported on ventilator days and all showed no significant differences between the early vs. delayed fed groups (WMD 0.03, 95% CI -3.01, 3.06 p = 0.99) (figure 9).

Other: All thirteen studies that reported nutritional endpoints showed a significant improvement in the groups receiving early enteral nutrition (calorie intake, protein intake, % goal achieved, faster nitrogen balance achieved). There were no differences in other complications between the groups.

Conclusions:

- 1) Early enteral nutrition, when compared to delayed nutrient intake is associated with a trend towards a reduction in mortality in critically ill patients.
- 2) Early enteral nutrition, when compared to delayed nutrient intake is associated with a significant reduction in infectious complications.
- 3) Early enteral nutrition, when compared to delayed nutrient intake has no effect on ICU or hospital length of stay.
- 4) Early enteral nutrition, when compared to delayed nutrient intake improves nutritional intake.

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis. Level 2 study: If any one of the above characteristics are unfulfilled

Study	Study Population		Intervention	Morta	ality # (%)†	Infections # (%)‡	
-	-	(score)	Early vs Delayed intake or No EN	Early EN	Delayed	Early EN	Delayed
1) Moore 1986	Trauma with abdominal trauma index > 15 N = 43	C.Random: not sure ITT: no Blinding: no (6)	Vivonex post op (< 24 hrs) via jejunostomy vs. D5W then progressed to parenteral nutrition if not on regular diet (both groups got PN)	1/32 (3)	2/31 (6)	3/32 (9)	9/31 (29)
2) Chiarelli 1990	Burns N = 20	C.Random: not sure ITT: yes Blinding: no (6)	Immediate EN (4.4 ± 0.49 hrs) vs > 48 hrs (57.7 ± 2.6 hrs) (gastric feeding)	0/10 (0)	0/10 (0)	3/10 (30) +ve blood cultures	7/10 (70) + ve blood cultures
3) Eyer 1993	Trauma, ICU N = 52	C.Random: not sure ITT: no Blinding: no (8)	EN < 24 hrs (31 ± 13 hrs from ICU admission) vs > 72 hrs (82 ± 11 hrs from ICU admission) (small bowel feeding)	2/19 (10.5)	2/19 (10.5)	29/19 per group	14/19 per group
4) Chuntrasakul 1996	Trauma patients with injury severity score 20-40 N = 38	C.Random: not sure ITT: yes Blinding: no (6)	Traumacal via gastric route (early i.e. immediately after resuscitation) + PN if needed vs IV fluids and oral diet when bowel function detected	1/21 (5)	3/17 (18)	NR	NR
5) Singh 1998	Non traumatic intestinal perforation and peritonitis BMI 21-22 N =37	C.Random: no ITT: yes Blinding: no (8)	Low residue blenderized diet via jejunostomy 12-24 hrs post laporotomy vs. IV fluids/lytes, oral diet started once bowel activity resumed	4/21 (19)	4/22 (18)	7/21 (33)	12/22 (55)
6) Kompan 1999	Multiple Trauma in shock N = 28	C.Random: yes ITT: no Blinding: no (9)	EN ~4.4 hrs after admission to ICU, 9.2 hrs after trauma vs ~ 36.5 hrs from ICU admission, 41.4 hrs after trauma. Gastric feeding, both groups got PN	0/14 ICU 0/14	1/14 (7) ICU 0/14	NR	NR
7) Minard 2000	Closed head injuries N = 30	C.Random: not sure ITT: no Blinding: no (7)	EN < 60 hrs (33 ± 15 hrs) (small bowel) vs late (84 ± 41 hrs) (gastric)	1/12 (8)	4/15(27)	6/12 (50)	7/15 (47)
8) Pupelis 2000	Severe Pancreatitis patients undergoing emergency surgery N = 29	C.Random: not sure ITT: yes Blinding: no (6)	EN < 24 hrs post-op via jejunum + IV fluids vs. IV fluids until reintroduction of normal diet	1/11 ((9)	5/18 (28)	NR	NR

Table 1. Randomized studies evaluating early EN vs. delayed nutrient intake in critically ill patients

Study	Population	Methods	Intervention		llity # (%)†		ns # (%) <u>‡</u>
9) Pupelis 2001	Post laporotomy for severe pancreatitis and peritonitis	(score) C.Random: not sure ITT: yes Blinding: no	Early vs Delayed intake EN < 12 hrs post-op via jejunum + IV fluids vs. IV fluids until reintroduction of normal diet	Early EN 1/30 (3)	Delayed 7/30 (23)	1/30 (3.3) Wound septic	Delayed d peritonitis 8/30 (26.7) complications
10) Kompan 2004	N = 60 Multiple trauma patients, ICU N =52	(6) C.Random: not sure ITT: yes Blinding: no (6)	EN ~10.6 hrs after injury vs ~ 36.5 hrs from ICU admission. Gastric feeding, both groups got PN	0/27	1/25 (4)	<u> </u>	/30 (26.7) 16/25 (64)
11) Malhotra 2004	Post-op for peritonitis N = 200	C.Random: not sure ITT: yes Blinding: no (6)	EN post-op < 48 hrs via nasoogastric+ IV fluids (oral feeds if ready by day 8 post-op) vs. IV fluids for 7 days (oral feeds if ready on day 5 post-op)	12/100 (12)	16/100 (16)	54/100 (54)	67/100 (67)
12) Peck 2004	Burns N = 27	C.Random: not sure ITT: no Blinding: no (6)	Crucial < 24 hrs from burn injury vs. 7 days. Both groups received oral diet as tolerated (4-9% calories) (gastric feeding)	4/14 (28)	5/13 (38)	12/14 (86)	11/13 (85)
13) Dvorak 2004	Acute spinal cord injury patients BMI= 26-29 N =17	C.Random: yes ITT: yes Blinding: no (10)	Continuous enteral feeding via nasogastric route within 72 hours of injury vs. after 120 hrs of injury. Both groups followed feeding protocol (head of bed, starting rate 25 ml/hr, gastric residual volumes checked, etc).	0/7	0/10	Infections per group 2.4 ± 1.5	Infections per group 1.7 ± 1.1
14) Nguyen 2008	Mixed ICU BMI = 27-28 N = 28	C.Random: no ITT: yes Blinding: no (9)	EN < 24 hrs of ICU admission vs. after day 4. No motility agents given	6/14 (43) ICU 4/14 (29)	6/14 (43) ICU 4/14 (29)	Pneumonia 3/14 (21)	Pneumonia 6/14 (43)

Table 1 (continued). Randomized studies evaluating early EN vs. delayed nutrient intake in critically ill patients

Study	dy LOS days		Ventilator days		Cost		Other	
	Early EN	delayed	Early EN	delayed	Early EN	delayed	Early El	delayed
	NR	NR	NR	NR	\$ 16,280 ± 2146	\$ 19.636 ± 3396	Co 14/32 (44)	mplications 15/31 (48)
1) Moore 1986					\$ 10,200 <u>+</u> 2140	\$ 17,030 <u>+</u> 3370		d intolerance NR
2) Chiarelli 1990	Hospital 69.2 ± 10.4 (10)	Hospital 89 ± 18.9 (10)	NR	NR	NR	NR	Days to - 8.8 ± 4.1	 hitrogen balance 24.1 ± 6.9 p < 0.05 al complications 2/10 (20)

Study			Ventilator days			Cost	Other
	Early EN	delayed	Early EN	delayed	Early EN	delayed	Early EN delayed
3) Eyer 1993	ICU 11.8 ± 7.9 (19)	ICU 9.9 ± 6.7 (19)	10.2 ± 8.1 (19)	8.1 ± 6.8 (19)	NR	NR	Calorie intake (kcal/kg/day) 30 ± 6 19 ± 5 $p < 0.001$ Protein intake (gm/kg/day) 1.3 ± 0.3 0.9 ± 0.2 $p < 0.001$ Organ System Failure $2/19 (10.5)$ $2/19 (10.5)$
4) Chuntrasakul 1996	ICU 8.1 ± 6.3 (21)	ICU 8.35 ± 4.8 (17)	5.29 ± 6.3 (21)	6.12 ± 5.3 (17)	NR	NR	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
5) Singh 1998	Hospital 14 ± 6.9 (19)	Hospital 13 ± 7.0 (18)	NR	NR	NR	NR	$\begin{array}{r llllllllllllllllllllllllllllllllllll$
6) Kompan 1999	ICU 11 (10.5-24.7)	ICU 14 (10.5-24.7)	13 (6.7-18)	11.9 (6-7.7)	NR	NR	EN received on Day 4 (mls) 1340 ± 473 703 ± 701 p = 0.009
7)Minard 2000	Hospital 30 ± 14.7 (12) ICU 18.5 ± 8.8 (12)	Hospital 21.3 ± 13.7 (15) ICU 11.3 ± 6.1 (15)	15.1 ± 7.5 (12)	10.4 ± 6.1 (15)	NR	NR	Calorie intake 1509 ± 45 1174 ± 425 p< 0.02
8) Pupelis 2000	Hospital 45 ± 96 (11) ICU 7 ± 41 (11)	Hospital 29 ± 103 (18) ICU 6 ± 34 (18)	NR	NR	NR	NR	NR
9) Pupelis 2001	Hospital 35.3 ± 22.9 (30) ICU 13.9 ± 14.6 (30)	Hospital 35.8 ± 32.5 (30) ICU 16 ± 20.5 (30)	NR	NR	NR	NR	Total kcals received after surgery 1295 ± 327 473 ± 156
10) Kompan 2004	ICU 15.9 ± 9.7 (27)	ICU 20.6 ± 18.5 (25)	12.9 ± 8.1 (27)	15.6 ± 16.1 (25)	NR	NR	EN received on Day 4 (mls) 1175 \pm 485 803 \pm 545 p = 0.012
11) Malhotra 2004	Hospital 10.6 ICU 1.6	Hospital 10.7 ICU 2.10	NR	NR	NR	NR	 % Patients receiving > 1500 calories post-op day 4 65% 0% p <0.001 % Patients receiving > 2500 calories post-op day 8 84% 0% p<0.001

Study	LOS days Early EN delayed	Ventilator days Early EN delayed	Cost Early EN delayed	Other Early EN delayed	Study	LOS days Early EN delayed	Ventilator days Early EN delayed
12) Peck 2004	Hospital60 ± 44 (14)ICU40 ± 32 (14)	Hospital60 ± 38 (13)ICU37 ± 33 (13)	32 ± 27 (14)	23 ± 26 (13)	NR	NR	Mean Calorie Intake 2234 2207 Mean calorie intake change per week 156 166
13) Dvorak 2004	Hospital 53 ± 34.4	Hospital 37.9 ± 14.6	31.8±35	20.9 ± 14.4	NR	NR	Number of Feeding complications 39 39 59 Hours to reach energy goals 113 166 Energy intake1938 ± 1100 1588 ± 983 Protein intake 86.8 ± 59 67.6 ± 54
14) Nguyen 2008	ICU 11.3 ± 3.0	ICU 15.9 ± 7.1	9.2 ± 3.4	13.7 ± 7.1	NR	NR	Mean Calorie Intake from day 0-4 2894 ± 198 0

C.Random: Concealed randomization

C.Rahdum: Concealed randomization
ITT: Intent to treat
NR: Not reported
‡ Refers to the # of patients with infections unless specified
† Presumed hospital mortality unless otherwise specified
± (): Mean ± SD =Standard deviation (number); (-): mean (range)

Figure 1

Review:	Early Enteral Nutrition vs. delayed nutrient intake
Comparison:	01 Early EN vs. delayed nutrient intake
Outcome:	01 Mortality

Study or sub-category	Early EN n/N	Delayed n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl	Year
Moore	1/32	2/31	• •	- 2.77	0.48 [0.05, 5.07]	1986
Chiarelli	0/10	0/10			Not estimable	1990
Eyer	2/19	2/19	_	- 4.44	1.00 [0.16, 6.38]	1993
Chuntrasakul	1/21	3/17	← ■	3.24	0.27 [0.03, 2.37]	1996
Singh	4/21	4/22	· · · · · · · · · · · · · · · · · · ·	9.76	1.05 [0.30, 3.66]	1998
Kompan 1999	0/14	1/14	▲ ■ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1.57	0.33 [0.01, 7.55]	1999
Minard	1/12	4/15	▲	3.61	0.31 [0.04, 2.44]	2000
Pupelis2000	1/11	5/18	▲ ■ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	3.77	0.33 [0.04, 2.45]	2000
Pupelis	1/30	7/30	▲■	3.69	0.14 [0.02, 1.09]	2001
Dvorak	0/7	0/10			Not estimable	2004
Kompan 2004	0/27	1/25	← ■	<u> </u>	0.31 [0.01, 7.26]	2004
Malhotra	12/100	16/100	·	31.58	0.75 [0.37, 1.50]	2004
Peck	4/14	5/13		13.17	0.74 [0.25, 2.18]	2004
Nguyen	6/14	6/14	+	20.86	1.00 [0.43, 2.35]	2008
Total (95% Cl)	332	338	-	100.00	0.68 [0.46, 1.01]	
Total events: 33 (Early EN), Test for heterogeneity: Chi ² Test for overall effect: Z =	² = 6.36, df = 11 (P = 0.85), l ² = 0	%				
			0.1 0.2 0.5 1 2	5 10		
			Course Could Chill Course do			

Favours Early EN Favours delayed

Figure 2. Subgroup analysis: Studies comparing early EN vs. IV fluids/no EN Review: Early Enteral Nutrition vs. delayed nutrient intake

Early Enteral Nutrition vs. delayed nutrient int
01 Early EN vs. delayed nutrient intake
01 Mortality

Outcome.	- 01	wona

Study or sub-category	Early EN n/N	Delayed n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl	Year
Moore	1/32	2/31	• •	- 5.05	0.48 [0.05, 5.07]	1986
Chuntrasakul	1/21	3/17	← ■	5.91	0.27 [0.03, 2.37]	1996
Singh	4/21	4/22		17.82	1.05 [0.30, 3.66]	1998
Pupelis2000	1/11	5/18	←	6.88	0.33 [0.04, 2.45]	2000
Pupelis	1/30	7/30	↓	6.74	0.14 [0.02, 1.09]	2001
Malhotra	12/100	16/100		57.61	0.75 [0.37, 1.50]	2004
Fotal (95% Cl)	215	218	-	100.00	0.62 [0.37, 1.05]	
fotal events: 20 (Early EN), 3	7 (Delayed)		_			
Fest for heterogeneity: Chi ² =	= 4.10, df = 5 (P = 0.54), l ² = 09	%				
Fest for overall effect: Z = 1.	78 (P – 0.08)					

Favours Early EN Favours delayed

tudy r sub-category	Early EN n/N	Delayed n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl	Year
- Sub-Galogory			55% 61	70	50,8 6	1 Gui
Chiarelli	0/10	0/10			Not estimable	1990
Eyer	2/19	2/19		9.83	1.00 [0.16, 6.38]	1993
Kompan 1999	0/14	1/14	← ■	3.47	0.33 [0.01, 7.55]	1999
Minard	1/12	4/15	← ■ ─────	7.99	0.31 [0.04, 2.44]	2000
Dvorak	0/7	0/10			Not estimable	2004
Kompan 2004	0/27	1/25	← ■	3.39	0.31 [0.01, 7.26]	2004
Peck	4/14	5/13	_	29.15	0.74 [0.25, 2.18]	2004
Nguyen	6/14	6/14	+	46.16	1.00 [0.43, 2.35]	2008
otal (95% CI)	117	120	-	100.00	0.77 [0.43, 1.38]	
otal events: 13 (Early EN), 1	9 (Delayed)					
est for heterogeneity: Chi ² =	1.87, df = 5 (P = 0.87), P = 09	%				
est for overall effect: Z = 0.	87 (P = 0.39)					

Figure 3. Subgroup analysis: Studies comparing early EN vs. delayed EN Review: Early Enteral Nutrition vs. delayed nutrient intake (Version 03)

Figure 4.

Review:	Early Enteral Nutrition vs. delayed nutrient intake
Comparison:	01 Early EN vs. delayed nutrient intake
Outcome:	02 Infectious Complications

Study or sub-category	Early EN n/N	delayed n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl	Year
Moore	3/32	9/31	• • • · · ·	3.96	0.32 [0.10, 1.08]	1986
Singh	7/21	12/22		9.81	0.61 [0.30, 1.25]	1998
Kompan	9/27	16/25		12.53	0.52 [0.28, 0.96]	1999
Minard	6/12	7/15		8.48	1.07 [0.49, 2.34]	2000
Malhotra	54/100	67/100		33.98	0.81 [0.64, 1.01]	2004
Peck	12/14	11/13	_ _ _	27.04	1.01 [0.74, 1.39]	2004
Nguyen	3/14	6/14		4.21	0.50 [0.15, 1.61]	2008
Total (95% Cl)	220	220	•	100.00	0.76 [0.59, 0.98]	
Total events: 94 (Early EN), ² Test for heterogeneity: Chi ² : Test for overall effect: Z = 2	= 9.22, df = 6 (P = 0.16), l ² = 34	l.9%				
			0.1 0.2 0.5 1 2	5 10		
			Favours Early EN Favours de	layed		

8

Figure 5. Subgroup analysis: Studies comparing early EN vs. IV fluids/no EN

Study or sub-category	Early EN n/N	delayed n/N	RR (rando 95% C	-	RR (random) 95% Cl	Year
Moore	3/32	9/31		8.75	0.32 [0.10, 1.08]	1986
Singh	7/21	12/22		21.33	0.61 [0.30, 1.25]	1998
-		-				
Malhotra	54/100	67/100		69.92	0.81 [0.64, 1.01]	2004
Total (95% CI)	153	153	-	100.00	0.70 [0.48, 1.02]	
Total events: 64 (Early EN),			-		,	
	² = 2.72, df = 2 (P = 0.26), I ² = 2	6.4%				

NEW Figure 6. Subgroup analysis: Studies comparing early EN vs. delayed EN Review: Early Enteral Nutrition vs. delayed nutrient intake (Version 03)

Review:	Early Enteral Nutrition vs. delayed nutrient intake (Version 03
Comparison:	01 Early EN vs. delayed nutrient intake
Outcome:	02 Infectious Complications

Study or sub-category	Early EN n/N	delayed n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl	Year
Minard	6/12	7/15		20.61	1.07 [0.49, 2.34]	2000
Kompan 2004	9/27	16/25	_	26.84	0.52 [0.28, 0.96]	2004
Peck	12/14	11/13	_ _	40.63	1.01 [0.74, 1.39]	2004
Nguyen	3/14	6/14		11.92	0.50 [0.15, 1.61]	2008
Total (95% CI)	67	67	-	100.00	0.79 [0.50, 1.25]	
Total events: 30 (Early EN),		2.5%				
Test for overall effect: Z = 1	= 6.31, df = 3 (P = 0.10), P = 5 1.01 (P = 0.31)	2.5%				
			0.1 0.2 0.5 1 2	5 10		
			Favoura Farly FN - Favoura dal	ave d		

Favours Early EN Favours delayed

Figure 7

Review:	Early Enteral Nutrition vs. delayed nutrient intake
Comparison:	01 Early EN vs. delayed nutrient intake
Outcome:	03 ICU LOS

Study or sub-category	N	Early EN Mean (SD)	N	Delayed Mean (SD)		VVMD (random) 95% Cl	Weight %	VVMD (random) 95% Cl	Year
Eyer	19	11.80(7.90)	19	9.90(6.70)			18.92	1.90 [-2.76, 6.56]	1993
Chuntrasakul	21	8.10(6.30)	17	8.35(4.80)		_	22.98	-0.25 [-3.78, 3.28]	1996
Minard	12	18.50(8.80)	15	11.30(6.10)			+ ↓ 15.23	7.20 [1.34, 13.06]	2000
Pupelis2000	11	7.00(41.00)	18	6.00(34.00)		.	1.14	1.00 [-27.87, 29.87]	2000
Pupelis	30	13.90(14.60)	30	16.00(20.50)			- 8.84	-2.10 [-11.11, 6.91]	2001
Kompan 2004	27	15.90(9.70)	25	20.60(18.50)			10.23	-4.70 [-12.82, 3.42]	2004
Peck	14	40.00(32.00)	13	37.00(33.00)		_	→ 1.56	3.00 [-21.55, 27.55]	2004
Nguyen	14	11.30(3.00)	14	15.90(7.10)			21.10	-4.60 [-8.64, -0.56]	2008
Total (95% Cl)	148		151				100.00	-0.18 [-3.32, 2.96]	
Test for heterogeneity: Ch Test for overall effect: Z =		P = 0.08), I ^z = 45.6%							
					-10	-5 0 5	10		

Favours Early EN Favours delayed

Figure 8.

Review:	Early Enteral Nutrition vs. delayed nutrient intake
Comparison:	01 Early EN vs. delayed nutrient intake
Outcome:	04 Hospital LOS

Study or sub-category	N	Early EN Mean (SD)	N	delayed Mean (SD)	WMD (random) 95% Cl	Weight %	₩MD (random) 95% Cl	Year
Chiarelli	10	69.20(10.40)	10	89.00(18.90)	←	17.55	-19.80 [-33.17, -6.43]	1990
Singh	19	14.00(6.90)	18	13.00(7.00)	_	31.21	1.00 [-3.48, 5.48]	1998
Minard	12	30.00(14.70)	15	21.30(13.70)		21.13	8.70 [-2.13, 19.53]	2000
Pupelis2000	11	45.00(96.00)	18	29.00(103.00)	←	→ 1.12	16.00 [-58.04, 90.04]	2000
Pupelis	30	35.30(22.90)	30	35.80(32.50)	• • •	16.47	-0.50 [-14.73, 13.73]	2001
Dvorak	7	53.00(34.40)	10	37.90(14.60)	▲	→ 6.95	15.10 [-11.94, 42.14]	2004
Peck	14	60.00(44.00)	13	60.00(38.00)	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	5.57	0.00 [-30.95, 30.95]	2004
Total (95% Cl)	103		114			- 100.00	-0.18 [-8.15, 7.80]	
Test for heterogeneity: Ch		P = 0.05), I² = 51.7%						
Test for overall effect: Z =	= 0.04 (P = 0.97)							
					-10 -5 0 5	10		

Favours Early EN Favours delayed

Figure 9.

	Early Enteral Nutrition vs 01 Early EN vs. delayed 05 Ventilator Days								
Study or sub-category	N	Early EN Mean (SD)	N	Delayed Mean (SD)		VVMD (random) 95% Cl	Weight %	WMD (random) 95% Cl	Year
Eyer	19	10.20(8.10)	19	8.10(6.80)			- 19.65	2.10 [-2.66, 6.86]	1993
Chuntrasakul	21	5.29(6.30)	17	6.12(5.30)		_	24.34	-0.83 [-4.52, 2.86]	1996
Kompan	27	12.90(8.10)	25	15.60(16.10)		_	12.54	-2.70 [-9.71, 4.31]	1999
Minard	12	15.10(7.50)	15	10.40(6.10)			17.78	4.70 [-0.55, 9.95]	2000
Dvorak	7	31.80(35.00)	10	20.90(14.40)			→ 1.19	10.90 [-16.52, 38.32]	2004
Peck	14	32.00(27.00)	13	23.00(26.00)	•		2.17	9.00 [-10.99, 28.99]	2004
Nguyen	14	9.20(3.40)	14	13.70(7.10)			22.33	-4.50 [-8.62, -0.38]	2008
Total (95% Cl)	114		113				100.00	0.03 [-3.01, 3.06]	
	eneity: Chi² = 10.45, df = (effect: Z = 0.02 (P = 0.99)								
					-10	-5 0 5	10		

Favours treatment Favours control

TOPIC: 2.0 Early Vs Delayed Nutrient Intake

Article inclusion log

Criteria for study selection

Type of study: RCT or Meta-analysis

Population: critically ill human patients (no elective surgery.)

Intervention: EN

Outcomes: mortality, LOS, QOL, functional recovery, complications, cost. Exclude studies with only biochemical, metabolic or nutritional outcomes.

	Author	Journal	I	Ε	Why Rejected
1	Ryan	Am Surg 1981			Elective surgery pts
2	Seri	Ital J Surg Sci 1984			Not ICU pts
3	Moore	J Trauma 1986			
4	Grahm	Neurosurgery 1989			Pseudorandomized
5	Jones	Crit Care Med 1989			No clinical outcomes
6	Moore	J Trauma 1989			Surgery pts
7	Chiarelli	Am J Clin Nutr 1990			
8	Schroeder	JPEN 1991			Elective surgery pts
9	The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group	N Engl J Med 1991		V	Elective surgery pts
10	Eyer	J Trauma 1993			
11	Binderow	Dis Colon Rectum			Elective surgery pts
12	Jenkins	J Burn Care Rehab 1994		\checkmark	Paediatric population
13	Braga	Infusionther Tran 1995		\checkmark	Elective surgery pts
14	Hasse	JPEN 1995		\checkmark	Elective surgery pts
15	Seenu	Trop Gastroenterol 1995		\checkmark	Elective surgery pts
16	Reissman	Annals of Surgery 1995		\checkmark	Elective surgery pts
17	Beier-Holgersen R	Gut 1996		\checkmark	Not ICU patients
18	Carr	BMJ 1996			Elective surgery pts
19	Chuntrasakul	J Med Assoc Thai 1996			
20	Ortiz	Int J Colorectal Dis 1996			Elective surgery pts
21	Hartsell	Arch Surg 1997		\checkmark	Elective surgery pts
22	Heslin	Annals of Surgery 1997			Cancer pts
23	Schilder	Gynecol Oncol 1997			Elective surgery pts
24	Watters	Annals of Surgery 1997			Elective surgery pts
25	Wang	Zhonghua Zheng Xing Shao Syhang Wai Ke Za Zhi		\checkmark	Unclear if ICU pts, No clinical outcomes
26	McCarter	Am J Gast 1998		\checkmark	Not ICU pts
27	Schwenk	Langenbecks Arch Surg 1998		\checkmark	Elective surgery
28	Singh	J Am Coll Surg 1998			
29	Stewart	Aus NZ J Surg 1998			Elective surgery pts
30	Zaloga	Crit Care Med 1999		\checkmark	Not RCT, review
31	Taylor	Crit Care Med 1999	\checkmark		
32	Kompan	Intensive Care Med 1999			

33	Beattie	Gut 2000			Elective surgery pts
34	Minard	JPEN J Parenter Enteral			
		Nutr 2000			
35	Pupelis	Eur J Surg 2000			
36	Lewis	BMJ 2001		\checkmark	Systematic review, ICU studies included
37	Marik	Crit Care Med 2001			Meta-analysis, ICU studies included
38	Peng	Burns 2001			No clinical outcomes
39	Pupelis	Nutrition 2001			
40	Soliani	Chir Ital 2001			Elective surgery/cancer pts
41	de Aguilar-Nascimento	Rev Assoc Med Bras 2002		\checkmark	Elective surgery
42	Ibrahim	JPEN 2002			Pseudorandomized
43	Dvorak	Spine 2004			
44	Feo	ANZ J Surg 2004			Elective surgery pts
45	Kompan	Clin Nutr 2004			
46	Malhotra	J Postgrad Med 2004			
47	Peck	J Trauma 2004			
48	Kaur	World J Surg 2005		\checkmark	Not ventilated patients as confirmed by authors
49	Andersen	The Cochrane Collaboration 2006		\checkmark	Systematic review, Individual studies looked at
50	Wasiak	The Cochrane Collaboration 2006		\checkmark	Systematic review, Individual studies looked at
51	Wasiak	J Hum Nutr Diet 2007		\checkmark	Systematic review, Individual studies looked at
52	Nguyen	Crit Care Med 2008	\checkmark		

I = included, E = excluded

References

- 1. Ryan JA Jr, Page CP, Babcock L. Early postoperative jejunal feeding of elemental diet in gastrointestinal surgery. Am Surg. 1981 Sep;47(9):393-403.
- 2. Seri S, Aquilio E. Effects of early nutritional support in patients with abdominal trauma. Ital J Surg Sci. 1984;14(3):223-7.
- 3. Moore EE, Jones TN. Benefits of immediate jejunostomy feeding after major abdominal trauma—a prospective, randomized study. J Trauma. 1986 Oct;26(10):874-81.
- 4. Grahm TW, Zadrozny DB, Harrington T. The benefits of early jejunal hyperalimentation in the head-injured patient. Neurosurgery 1989 Nov;25(5):729-35.
- 5. Jones TN, Moore FA, Moore EE, McCroskey BL. Gastrointestinal symptoms attributed to jejunostomy feeding after major abdominal trauma a critical analysis. Crit Care Med 1989 Nov;17(11):1146-50.
- 6. Moore FA, Moore EE, Jones TN, McCroskey BL, Peterson VM. TEN versus TPN following major abdominal trauma--reduced septic morbidity. J Trauma. 1989 Jul;29(7):916-22; discussion 922-3.
- 7. Chiarelli A, Enzi G, Casadei A, Baggio B, Valerio A, Mazzoleni F. Very early nutrition supplementation in burned patients. Am J Clin Nutr. 1990 Jun;51(6):1035-9.
- Schroeder D, Gillanders L, Mahr K, Hill GL. Effects of immediate postoperative enteral nutrition on body composition, muscle function, and wound healing. JPEN J Parenter Enteral Nutr. 1991 Jul-Aug;15(4):376-83.
- 9. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. Perioperative total parenteral nutrition in surgical patients. N Engl J Med. 1991 Aug 22;325(8):525-32.
- 10. Eyer SD, Micon LT, Konstantinides FN, Edlund DA, Rooney KA, Luxenberg MG, Cerra FB. Early enteral feeding does not attenuate metabolic response after blunt trauma. J Trauma. 1993 May;34(5):639-43.
- 11. Binderow SR, Cohen SM, Wexner SD, Nogueras JJ. Must early postoperative oral intake be limited to laparoscopy? Dis Colon Rectum. 1994 Jun;37(6):584-9.
- 12. Jenkins ME, Gottschlich MM, Warden GD. Enteral feeding during operative procedures in thermal injuries. J Burn Care Rehabil 1994 Mar-Apr;15(2):199-205.
- 13. Braga M, Vignali A, Gianotti L, Cestari A, Profili M, Di Carlo V. Benefits of early postoperative enteral feeding in cancer patients. Infusionsther Transfusionsmed 1995 Oct;22(5):280-4.

- 14. Hasse JM, Blue LS, Liepa GU, Goldstein RM, Jennings LW, Mor E, Husberg BS, Levy MF, Gonwa TA, Klintmalm GB. Early enteral nutrition support in patients undergoing liver transplantation. JPEN J Parenter Enteral Nutr. 1995 Nov-Dec;19(6):437-43.
- 15. Seenu V, Goel AK. Early oral feeding after elective colorectal surgery: is it safe. Trop Gastroenterol. 1995 Oct-Dec;16(4):72-3.
- 16. Reissman P, Teoh TA, Cohen SM, Weiss EG, Nogueras JJ, Wexner SD. Is early oral feeding safe after elective colorectal surgery? A prospective randomized trial. Ann Surg. 1995 Jul;222(1):73-7.
- 17. Beier-Holgersen R, Boesby S. Influence of postoperative enteral nutrition on postsurgical infections. Gut 1996;39(6):833-5.
- Carr CS, Ling KD, Boulos P, Singer M. Randomised trial of safety and efficacy of immediate postoperative enteral feeding in patients undergoing gastrointestinal resection. BMJ. 1996 Apr 6;312(7035):869-71.
- Chuntrasakul C, Siltharm S, Chinswangwatanakul V, Pongprasobchai T, Chockvivatanavanit S, Bunnak A. Early nutritional support in severe tramatic patients. J Med Assoc Thai 1996 Jan; 79(1):21-6.
- 20. Ortiz H, Armendariz P, Yarnoz C. Is early postoperative feeding feasible in elective colon and rectal surgery? Int J Colorectal Dis. 1996;11(3):119-21.
- 21. Hartsell PA, Frazee RC, Harrison JB, Smith RW. Early postoperative feeding after elective colorectal surgery. Arch Surg. 1997 May;132(5):518-20; discussion 520-1.
- 22. Heslin MJ, Latkany L, Leung D, Brooks AD, Hochwald SN, Pisters PW, Shike M, Brennan MF. A prospective, randomized trial of early enteral feeding after resection of upper gastrointestinal malignancy. Ann Surg. 1997 Oct;226(4):567-77.
- 23. Schilder JM, Hurteau JA, Look KY, Moore DH, Raff G, Stehman FB, Sutton GP. A prospective controlled trial of early postoperative oral intake following major abdominal gynecologic surgery. Gynecol Oncol. 1997 Dec;67(3):235-40.
- 24. Watters JM, Kirkpatrick SM, Norris SB, Shamji FM, Wells GA. Immediate postoperative enteral feeding results in impaired respiratory mechanics and decreased mobility. Ann Surg. 1997 Sep;226(3):369-77
- Wang S, Wang S, Li A. [A clinical study of early enteral feeding to protect the gut function in burned patients] [Article in Chinese]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1997 Jul;13(4):267-71.

- 26. McCarter TL, Condon SC, Aguilar RC, Gibson DJ, Chen YK. Randomized prospective trial of early versus delayed feeding after percutaneous endoscopic gastrostomy placement. Am J Gastroenterol. 1998 Mar;93(3):419-21.
- 27. Schwenk W, Böhm B, Haase O, Junghans T, Müller JM. Langenbecks. Laparoscopic versus conventional colorectal resection: a prospective randomised study of postoperative ileus and early postoperative feeding. Arch Surg. 1998 Mar;383(1):49-55.
- 28. Singh G, Ram RP, Khanna SK. Early post-operative enteral feeding in patients with nontraumatic intestinal perforation and peritonitis. J Am Coll Surg. 1998 Aug;187(2):142-6.
- 29. Stewart BT, Woods RJ, Collopy BT, Fink RJ, Mackay JR, Keck JO. Early feeding after elective open colorectal resections: a prospective randomized trial. Aust N Z J Surg. 1998 Feb;68(2):125-8.
- 30. Zaloga GP. Early enteral nutritional support improves outcome: hypothesis or fact? Crit Care Med 1999 Feb;27(2):259-61.
- 31. Taylor SJ, Fettes SB, Jewkes C, Nelson RJ. Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med 1999 Nov:27:2594-5.
- 32. Kompan L, Kremzar B, Gadzijev E, Prosek M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999 Feb;25(2):157-61.
- 33. Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively in malnourished surgical patients. Gut. 2000 Jun;46(6):813-8.
- 34. Minard G, Kudsk KA, Melton S, Patton JH, Tolley EA. Early versus delayed feeding with an immune-enhancing diet in patients with severe head injuries.JPEN J Parenter Enteral Nutr. 2000 May-Jun;24(3):145-9.
- 35. Pupelis G, Austrums E, Jansone A, Sprucs R, Wehbi H. Randomised trial of safety and efficacy of postoperative enteral feeding in patients with severe pancreatitis: preliminary report. Eur J Surg 2000;166(5):383-7.
- Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-analysis of controlled trials. BMJ. 2001 Oct 6;323(7316):773-6.
- 37. Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70.
- 38. Peng YZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 Mar;27(2):145-9.

- Pupelis G, Selga G, Austrums E, Kaminski A. Jejunal feeding, even when instituted late, improves outcomes in patients with severe pancreatitis and peritonitis. Nutrition. 2001 Feb;17(2):91-4.
- 40. Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32.
- 41. de Aguilar-Nascimento JE, Göelzer J. [Early feeding after intestinal anastomoses: risks or benefits?] [Article in Portuguese] Rev Assoc Med Bras. 2002 Oct-Dec;48(4):348-52.
- 42. Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81.
- 43. Dvorak MF, Noonan VK, Belanger L, Bruun B, Wing PC, Boyd MC, Fisher C. Early versus late enteral feeding in patients with acute cervical spinal cord injury: a pilot study. Spine. 2004 May 1;29(9):E175-80.
- 44. Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled study. ANZ J Surg. 2004 May;74(5):298-301.
- 45. Kompan L, Vidmar G, Spindler-Vesel A, Pecar J. Is early enteral nutrition a risk factor for gastric intolerance and pneumonia? Clin Nutr. 2004 Aug;23(4):527-32.
- 46. Malhotra A, Mathur AK, Gupta S. Early enteral nutrition after surgical treatment of gut perforations: a prospective randomised study. J Postgrad Med. 2004 Apr-Jun;50(2):102-6.
- 47. Peck MD, Kessler M, Cairns BA, Chang YH, Ivanova A, Schooler W. Early enteral nutrition does not decrease hypermetabolism associated with burn injury. J Trauma. 2004 Dec;57(6):1143-9.
- 48. Kaur N, Gupta MK, Minocha VR. Early enteral feeding by nasoenteric tubes in patients with perforation peritonitis. World J Surg 2005 Aug;29(8):1023-7.
- 49. Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative complications. Cochrane Database Syst Rev. 2006 Oct 18;(4):CD004080.
- 50. Wasiak J, Cleland H, Jeffery R. Early versus delayed enteral nutrition support for burn injuries. Cochrane Database Syst Rev. 2006 Jul 19;3:CD005489.
- 51. Wasiak J, Cleland H, Jeffery R. Early versus late enteral nutritional support in adults with burn injury: a systematic review. J Hum Nutr Diet. 2007 Apr;20(2):75-83.

52. Nguyen NQ, Fraser RJ, Bryant LK, Burgstad C, Chapman MJ, Bellon M, Wishart J, Holloway RH, Horowitz M. The impact of delaying enteral feeding on gastric emptying, plasma cholecystokinin, and peptide YY concentrations in critcally ill patients. Crit Care Med 2008;36(5):1655-6.