1.0 The use of Enteral Nutrition vs. Parenteral Nutrition

Recommendation:

Based on one level 1 and 12 level 2 studies, when considering nutrition support for critically ill patients, we strongly recommend the use of Enteral Nutrition over Parenteral Nutrition.

Discussion: The committee noted the homogenous results related to the effect of parenteral nutrition on infectious complications across several studies that when aggregated, resulted in a large effect size with narrow confidence intervals. Safety, cost and feasibility considerations favoured the use of EN over PN. The committee noted the results of the subgroup analysis of the studies in which the PN group received more calories and had higher blood sugars than the EN group. The increase in mortality or infections could not be attributed to a higher calorie intake or hyperglycemia. The committee also noted the paucity of data relating to malnourished, gastrointestinal compromised patients.

Values	Definition	Score: 0, 1, 2, 3
Effect size	Magnitude of the absolute risk reduction attributable to the intervention listeda higher score indicates a larger effect size	3
Confidence interval	95% confidence interval around the point estimate of the absolute risk reduction, or the pooled estimate (if more than one trial)a higher score indicates a smaller confidence interval	3
Validity	Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised	2
Homogeneity or Reproducibility	Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials	3
Adequacy of control group	Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3)	3
Biological Plausibility	Consistent with understanding of mechanistic and previous clinical work (large inconsistencies=1, minimal inconsistencies=2, very consistent=3)	3
Generalizability	Likelihood of trial findings being replicated in other settings (low likelihood i.e. single centre=1, moderate likelihood i.e. multicentre with limited patient population or practice setting=2, high likelihood i.e. multicentre, heterogenous patients, diverse practice settings=3	2
Low cost	Estimated cost of implementing the intervention listeda higher score indicates a lower cost to implement the intervention in an average ICU	3
Feasible	Ease of implementing the intervention listeda higher score indicates greater ease of implementing the intervention in an average ICU	3
Safety	Estimated probability of avoiding any significant harm that may be associated with the intervention listeda higher score indicates a lower probability of harm	2

1.0 Enteral Nutrition vs. Parenteral Nutrition

Question: Does enteral nutrition compared to parenteral nutrition result in better outcomes in the critically ill adult patient?

Summary of evidence: There were 12 level 2 studies and one level 1 study (Woodcock et al) that were reviewed and meta-analyzed. In the Woodcock study, data from ICU patients only were abstracted and there were 11/38 patients that crossed over between EN and PN group after randomization. The data on mortality and infectious complications from the Moore 1989 study was included in the Moore 1992 meta-analysis whereas data on calorie intake, blood sugars and non septic complications were not and hence appear in the tables for the Moore 1989 study. Apriori, we considered that the harmful effect of PN may be associated with relative overfeeding and hyperglycemia. Accordingly, we conducted a subgroup analysis to determine the effect of excess calories (PN compared to EN) and higher glucose levels (across groups).

Mortality: 12 studies reported on mortality and when these were aggregated, there was no difference in mortality between the groups receiving EN or PN (RR 1.08, 95 % confidence interval 0.70, 1.65, p = 0.7) (See page 1-8). When the trials in which the PN group were fed more calories than the EN group were aggregated, there was no effect seen (RR 1.58, 95% CI 0.75, 3.35, p = 0.2). Similarly, when the trials in which the PN and EN groups were fed isocalorically were aggregated, there was no effect seen (RR 1.08, 95% CI 0.75, 3.35, p = 0.2). Similarly, when the trials in which the PN and EN groups were fed isocalorically were aggregated, there was no effect seen (RR 1.08, 95% CI 0.56, 2.06, p = 0.8) (page 1-10). There was not statistical difference across these subgroups (p=0.34). Similarly, subgroup analysis comparing studies in which the PN group had higher blood sugars than the EN group to studies in which there was no difference in blood sugars showed that increased mortality in the PN groups could not be explained by hyperglycemia.

Infections: When the 7 studies which reported infectious complications were statistically aggregated, the meta-analysis showed that EN, compared to PN, was associated with a *significant* reduction in the incidence of infectious complications (RR 0.64, 95 % confidence interval 0.47, 0.87 p =0.004) (see page 1-9). Subgroup analysis showed that the increase in infections could not be attributed to higher calories or hyperglycemia.

LOS, Ventilator days: Data not aggregated statistically due to insufficient data. There was no difference found in LOS (Rapp, Adams, Kudsk, Moore 1992) or ventilator days (Rapp, Adams Kudsk, Kalfarentzos) between the groups receiving EN or PN.

Other complications: Of the 11 studies that reported on nutritional intake, 5 found that PN was associated with a higher calorie intake (Rapp, Young, Moore, Kudsk, Woodcock (Blood sugar values in the Woodcock pertain to the entire group, not the ICU population}), the remaining 6 reported no significant difference in intakes between the groups (Adams, Hadley, Cerra, Dunham, Borzotta, Kalfarantzos).

5 studies reported on hyperglycemia and in 3 of these, EN was associated with a lower incidences of hyperglycemia compared to PN (Adams p < 0.001), (Borzotta p < 0.05, Kalfarentzos). Two studies showed no difference in blood sugars between the groups receiving EN and PN (Moore 1989, Rapp). Three studies showed that EN was associated with an increase in diarrhea (Cerra p < 0.05, Young, Kudsk p < 0.01)) while one showed an association with EN and a reduction in diarrhea (Borzotta p < 0.05) and one study showed no difference (Adam). EN was also associated with an increase in vomiting (Cerra p < 0.05) and a less favourable neurological outcome at 3 months (p = 0.05) in brain injured patients (Young p = 0.05, this significance disappeared after 6months and 1 year. More overall nutrition related complications were noted in EN vs PN (Dunham). Cost: Four studies reported a cost savings with the use of EN vs PN (Adams, Cerra, Borzotta and Kalfarentzos) Conclusions:

- 1) The use of EN compared to PN is not associated with a reduction in mortality in critically ill patients.
- 2) The use of EN compared to PN is associated with a significant reduction in the number of infectious complications in the critically ill.
- 3) No difference found in ventilator days or LOS between groups receiving EN or PN.
- 4) Insufficient data to comment on other complications; hyperglycemia or higher calories not found to result in higher mortality of infections.
- 5) EN is associated with a cost savings when compared to PN.

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis Level 2 study: If any one of the above characteristics are unfulfilled.

Study	Population	Methods (score)	Intervention	Mortality # (%)†		Infections # (%)‡		
		、		EN	PN	EN	PN	
1. Rapp 1983	Head Injured patients n = 38 (<ideal td="" weight)<=""><td>C.Random: not sure ITT: no Blinding: no (4)</td><td>EN vs PN</td><td>9/18 (50)</td><td>3/20 (15)</td><td>NR</td><td>NR</td></ideal>	C.Random: not sure ITT: no Blinding: no (4)	EN vs PN	9/18 (50)	3/20 (15)	NR	NR	
2. Adams 1986	Trauma patients undergoing laporotomy N= 46 36/46 ICU patients	C.Random: not sure ITT: yes Blinding: no (8)	EN vs PN	1/23 (4)	3/23 (13)	15/23 (65)	17/23 (74)	
3. Young 1987	Brain injured patients N = 58	C.Random: not sure ITT: no Blinding: no (6)	EN vs PN	10/28 (36)	10/23 (43)	5/28 (18)	4/23 (17)	
4. Peterson 1988	Critically ill patients with abdominal trauma N = 59	C.Random: not sure ITT: no Blinding: no (5)	EN vs PN	NR	NR	2/21 (10)	8/25 (32)	
5. Cerra 1988	ICU patients post sepsis N = 70 (hypermetabolic patients)	C.Random: not sure ITT: no Blinding: no (2)	EN vs PN	7/31 (22) ICU	8/35 (23) ICU	NR	NR	
6. Moore 1989	Abdominal trauma patients N = 75	C.Random: yes ITT: no Blinding: no (10)	EN vs PN	NR	NR	5/29 (17)	11/30 (37)	

Table 1. Randomized studies evaluating EN vs PN in critically ill patients

Study	Population	Methods (score)	Intervention	Mortality # (%)†		Intervention Mortality # (%)† Infections # (%):		ns # (%)‡
		(0000)		EN	PN	EN	PN	
7. Kudsk 1992	Abdominal trauma N = 98	C.Random: not sure ITT: no Blinding: single (10)	EN vs PN	1/51 ICU	1/45 ICU	9/51 (16)	18/45 (40)	
8. Moore 1992	Meta-analysis High risk surgical patients N = 230	C.Random: NR ITT: NR Blinding: NR (NA)	EN vs PN	6/118 (5) ICU 8/118 (7) 30 day	7/112 (6) ICU 11/112 (10) 30 day	19/118 (16)	39/112 (35)	
9. Dunham 1994	Blunt trauma N = 37	C.Random: not sure ITT: no Blinding: no (8)	EN vs PN	1/12 (7)	1/15 (8)	NR	NR	
10. Borzotta 1994	Closed head injury N = 59	C.Random: not sure ITT: no Blinding: no (6)	EN vs PN	5/28 (18)	1/21 (5)	51/28 per group	39/21 per group	
11. Hadfield 1995	ICU patients, mainly cardiac bypass N = 24	C.Random: not sure ITT: no Blinding: no (7)	EN vs PN	2/13 (15) ICU	6/11 (55) ICU	NR	NR	
12. Kalfarentzos 1997	Severe acute pancreatitis N = 38	C.Random: not sure ITT: no Blinding: single (9)	EN vs PN	1/18 (6) ICU	2/20 (10) ICU	5/18 (28)	10/20 (50)	
13. Woodcock 2001	Patients needing nutrition support N=562 ICU patients N =38 (all degrees of malnutirition)	C.Random: yes ITT: yes Blinding: single (12)	EN vs PN	9/17 (53)	5/21 (24)	6/16 (38)	11/21 (52)	

Table 1. (continued) Randomized studies evaluating EN vs. PN in critically ill patients

C.Random: concealed randomization

ITT: intent to treat

* median/mean values, no standard deviation hence not included in meta-analysis

‡ refers to the # of patients with infections unless specified ** data on ICU patients obtained directly from authors

NR: not reported † presumed hospital mortality unless otherwise specified $\pm\,$ () : mean $\pm\,$ Standard deviation (number) reported data pertaining to ICU patients only NS = not statistically significant

4

Study	LOS	days	Ventilator days		Cost		Other	
	EN	PN	EN	PN	EN	PN	EN PN	
1. Rapp 1983	49.4 * Hospital	52.6* Hospital	10.3*	10.4*	NR	NR	Calorie intake (kcals) 685 1750 p = 0.001 Nitrogen intake (gms) 4.0 10.2 p = 0.002 Hyperglycemia no difference between groups	
2. Adams 1986	$13 \pm 11 (19)$ ICU 30 $\pm 21 (19)$ Hospital	10 ± 10 ICU 31 ± 29 (17) Hospital	12 ± 11 (17)	10 ± 10 (13)	\$ 1346.00/day	\$ 3729.00/day	Calorie intake (kcals) 2088 2572 NS Hyperglycemia (pt. Days) 24/242 (10) 49/220 (22) p < 0.001 Line problems 13/9 9/7 Diarrhea 3.5 days/patient 3.8 days/patient	
3. Young 1987	NR	NR	NR	NR	NR	NR	Calories + BEE x 1.75 59 % 76 % p = 0.02 Protein intake (gm/kg/day) 0.91 ± 0.09 1.35 ± 0.12 p = 0.04 Favourable neurological outcome 3 months 17.9 % 43.5 % Diarrhea 23/28 (82) 13/23 (57)	
4. Peterson 1988	13. 2 ± 1.6 (21) Hospital 3.7 ± 0.8 (21) ICU	14.6 ± 1.9 (24) Hospital 4.6 ± 1.0 (25) ICU	NR	NR	NR	NR	Day 5 Calorie Intake (kcals) 2204 ± 173 2548 \pm 85 Day 5 Nitrogen Intake (gms) 12.6 ± 1.0 14.8 \pm 0.6	
5. Cerra 1988	NR	NR	NR	NR	\$ 228 ± 59 /day	\$ 330 ± 61 /day	Calorie intake 1684 ± 573 2000 ± 20 NS MOSF 7/31 (23) 7/35 (20) Diarrhea 25/31 (81) 9/35 (26) Vomiting 10/31 (32) 10/35 (6)	
6. Moore 1989	NR	NR	NR	NR	NR	NR	$\begin{array}{c} \mbox{Calorie intake}\\ 1847 \pm 123 & 2261 \pm 60 & \mbox{p=0.01}\\ \mbox{Bood sugars}\\ \mbox{No difference between the groups}\\ \mbox{Non septic complications}\\ 6/29 (21 & 7/30 (23) \end{array}$	

Table 1. (continued) Randomized studies evaluating EN vs. PN in critically ill patients

Study	LOS	days	Ventila	tor days	C	ost	Other
	EN	PN	EN	PN	EN	PN	EN PN
7. Kudsk 1992	20.5 ± 19.9 (51) Hospital	19.6 ± 18.8 (45) Hospital	2.8 ± 4.9 (51)	3.2 ± 6.7 (45)	NR	NR	Calorie intake (Kcal/kg/day) 15.7 ± 4.2 19.1 ± 3.3 p < 0.05 Diarrhea 11/51 7/45
8. Moore 1992	17.0* Hospital 4.4* ICU	22* Hospital 7.3* ICU	NR	NR	NR	NR	NR NR
9. Dunham 1994	NR	NR	NR	NR	NR	NR	Calorie intake No difference between the groups Protein intake No difference between the groups Nutrition related complications 3/12 (25) 2/15 (13)
10. Borzotta 1994	39 ± 23.1 Hospital assumed	36.9 ± 14 Hospital assumed	NR	NR	\$ 121,941.00	\$ 112,450.00	Calorie intake No difference between the groups Placement complications 3/28 0/21 Aspiration 3/28 0/21 Hyperglycemia 12/28 (44) 16/21 (76) Diarrhea 30 % 62 %
11. Hadfield 1995	NR	NR	NR	NR	NR	NR	NR NR
12. Kalfarentzos 1997	11 (5-21) * ICU 40 (25-83) * Hospital	12 (5-24)* ICU 39 (22-73) * Hospital	15 (6-16) *	11 (7-31)*	Savings of 70 pounds/day	NR	Calorie intake (kcal/kg/day) 24.1 24.5 NS Protein intake (gm/kg/day) 1.43 1.45 NS Hyperglycemia 4/18 (22) 9/20 (45)
13. Woodcock 2001	33.2 ± 43 (16)	27.3 ± 18.7 (18)	NR	NR	NR	NR	% Target intake achieved 54.1 % 96.7 % p< 0.001 < 80% target intake 62.5 % 6.3 % p < 0.001

Table 1. (continued). Randomized studies evaluating EN vs. PN in critically ill patients

C.Random: concealed randomization

ITT: intent to treat

* median/mean values, no standard deviation hence not included in meta-analysis
‡ refers to the # of patients with infections unless specified
** data on ICU patients obtained directly from authors

NR: not reported † presumed hospital mortality unless otherwise specified

 \pm (): mean \pm Standard deviation (number) reported data pertaining to ICU patients only NS = not statistically significant

Review:	Enteral Nutrition vs Parenteral Nutrition
Comparison:	01 EN vs PN
Outcome:	02 Mortality

Study	EN	PN	RR (random)	Weight	RR (random)	
or sub-category	п/N	n/N	95% CI	%	95% Cl	Year
Adams	1/23	3/23		3.89	0.33 [0.04, 2.97]	1986
Borzotta	5/28	1/21		- 4.28	3.75 [0.47, 29.75]	1994
Cerra	7/31	8/35	_	14.74	0.99 [0.40, 2.41]	1998
Dunham	1/12	1/15		2.72	1.25 [0.09, 17.98]	1994
Hadfield	2/13	6/11	_	8.27	0.28 [0.07, 1.13]	1995
Kalfarentzos	1/18	2/20	_	3.52	0.56 [0.05, 5.62]	1997
Kudsk	1/51	1/45		2.59	0.88 [0.06, 13.70]	1992
Moore 1992	8/118	11/112	_	15.09	0.69 [0.29, 1.65]	1992
Rapp	9/18	3/20		10.89	3.33 [1.07, 10.43]	1983
Woodcock	9/17	5/21	⊢ ∎−−	14.84	2.22 [0.92, 5.40]	2001
Young	10/28	10/23	-	19.18	0.82 [0.42, 1.62]	1987
Total (95% Cl)	357	346	•	100.00	1.05 [0.66, 1.66]	
Total events: 54 (EN), 51 (PN	4)		r -			
Test for heterogeneity: Chi2	= 14.38, df = 10 (P = 0.16), l ² =	30.5%				
Test for overall effect: Z = 0	.19 (P = 0.85)					
		0,	01 0.1 1 10	100		
			Favours EN Favours PN			

Review:	Enteral Nutrition vs Parenteral Nutrition
Comparison:	01 EN vs PN
Outcome:	01 Infectious complications

Subgroup analysis EN vs PN Mortality in studies where the PN group received more calories than the EN group Comparison: 01 EN vs PN Outcome: 02 Mortality

Study	EN n/N	PN n/N	RR (95%Cl Random	Weight) %	RR (95%Cl Random)	Year	
Kudsk	1 / 51	1/45			0.88[0.06,13.70]	1992	
x Moore 1989	0/29	0/30		0.0	Not Estimable	1989	
Rapp	9/18	3/20	_ _	- 24.3	3.33[1.07,10.43]	1983	
Woodcock	9/17	5/21		31.2	2.22[0.92,5.40]	2001	
Young	10/28	10/23		37.9	0.82[0.42,1.62]	1987	
Total(95%Cl)	29/143	19/139		100.0	1.58[0.75,3.35]		
Test for heterogeneity ch	ni-square=5.81 df=3 p=0.1	2					
Test for overall effect z=	=1.20 p=0.2						
		.01 Fa	.1 1 vours EN	10 100 Favours PN			

Mortality in studies where the PN group received similar calories to the EN group Review: Enteral Nutrition vs Parenteral Nutrition

Comparison: Outcome:	01 EN vs PN 02 Mortality						
Study or sub-categor	EN ry n/N	PN n/N		RR (random) 95% Cl	Weight %	RR (random) 95% Cl	Year
Adams Borzotta Cerra Dunham Kalfarentzos	1/23 5/28 7/31 1/12 1/18	3/23 1/21 8/35 1/15 2/20	← ←		10.31 11.50 62.04 6.94 9.21	0.33 [0.04, 2.97] 3.75 [0.47, 29.75] 0.99 [0.40, 2.41] 1.25 [0.09, 17.98] 0.56 [0.05, 5.62]	1986 1994 1998 1994 1997
Total (95% Cl) Total events: 1 Test for hetero Test for overal	112 5 (EN), 15 (PN) ogeneity: Chi² = 2.82, df = 4 (P = 0.59), l² = 0% Il effect: Z = 0.02 (P = 0.98)	114		•	100.00	0.99 [0.49, 2.00]	
			0.1 0.2	0.5 1 2	5 10		
			Fa	avours EN Favours PN			

Mortality in studies with hyperglycemia where the PN group had higher blood sugars than the EN group Comparison: 01 EN vs PN Outcome: 02 Mortality

Outcome. Uz Moi	ranty ru	DU			347-1-b4	DD.		
Study	n/N	n/N	(95%CI	andom)	weight %	(95%Cl Random)	Year	
Adams	1/23	3/23		<u> </u>	33.3	0.33[0.04,2.97]	1986	
Borzotta	5/28	1/21	_		- 36.0	3.75[0.47,29.75]	1994	
Kalfarentzos	1/18	2/20		+	30.7	0.56[0.05,5.62]	1997	
Total(95%Cl)	7/69	6/64			100.0	0.93[0.21,4.15]		
Test for heterogeneity chi-	square=2.80 df=2 p=0.2	5						
Test for overall effect z=-	0.09 p=0.9							
		.0	.i	1 10	100			
		F	avours EN	Favo	urs PN			

Infections in studies where the PN group received more calories than the EN group

Review: Comparison: Outcome:	Enteral Nutrition vs Parenteral Nutrition 01 EN vs PN 01 Infectious complications						
Study or sub-category	EN y n/N	PN n/N		RR (random) 95% Cl	Weight %	RR (random) 95% Cl	Year
Kudsk Moore 1992 Peterson Woodcock	9/51 19/118 2/21 6/16	18/45 39/112 8/25 11/21	•		24.21 49.66 5.63 20.50	0.44 [0.22, 0.88] 0.46 [0.29, 0.75] 0.30 [0.07, 1.25] 0.72 [0.34, 1.52]	1992 1992 1988 2001
Total (95% Cl) Total events: 36 Test for hetero Test for overall	206 6 (EN), 76 (PN) geneity: Chi ² = 1.61, df = 3 (P = 0.66), l ² = 0% effect: Z = 4.13 (P < 0.0001)	203		•	100.00	0.49 [0.35, 0.69]	
			0.1	0.2 0.5 1 2 Favours EN Favo	2 5 10 9 5 10		

Infections in studies where the PN group received similar calories to the EN group

Review: Comparison:	Enteral Nutrition vs Parenteral Nutrition 01 EN vs PN 01 Infectious complications								
Outcome:									
Study	EN	PN	RR (random)	Weight	RR (random)				
or sub-category	/ n/N	n/N	95% Cl	%	95% CI	Year			
Adams	15/23	17/23		81.78	0.88 [0.60, 1.30]	1986			
Kalfarentzos	5/18	10/20		18.22	0.56 [0.23, 1.32]	1997			
Total (95% Cl) Total events: 20	41 (EN), 27 (PN)	43	-	100.00	0.81 [0.56, 1.18]				
Test for heterog	eneity: Chi ² = 1.05, df = 1 (P = 0.30), l ² = 5.0%								
Test for overall	effect: Z = 1.10 (P = 0.27)								
			0.1 0.2 0.5 1 2	5 10					
			Favours EN Favours Ph	N					

Infections in studies with hyperglycemia where the PN group had higher blood sugars than the EN group

Comparison: 01 EN vs PN Outcome: 01 Infectious complications									
Study	ĔŇ n/N	PN n/N		RR (95%Cl Rar	ndom)	Weight %	RR (95%Cl Random)	Year	
Adams	15/23	17/23				81.8	0.88[0.60,1.30]	1986	
Kalfarentzos	5/18	10/20				18.2	0.56[0.23,1.32]	1997	
Total(95%Cl)	20 / 41	27/43		-		100.0	0.81[0.56,1.18]		
Test for heterogeneity chi-square=1.05 df=1 p=0.3									
Test for overall effec	t z=-1.10 p=0.3								
			.01 . Favours EN	1 1	10 Favours P	100 N			

TOPIC: Enteral Nutrition vs. Parenteral Nutrition (EN vs. PN)

Article inclusion log

Criteria for study selection

Type of study: RCT or Meta-analysis

Population: critically ill, ventilated patients (no elective surgical patients)

Intervention: TPN and /or EN

Outcomes: mortality, LOS, QOL, functional recovery, complications, cost. Exclude studies with only biochemical, metabolic or nutritional outcomes.

	Author	Journal		Ε	Why Rejected
1	Lim	Br J Surg 1981			Cancer pts, not ICU pts
2	Sako	J Surg Oncol 1981			Cancer pts, not ICU pts
3	Rapp	J Neurosurg 1983			
4	Seri	It J Surg Sci 1984			Excluded April 2002 as not
					likely ICU patients
5	Wiedeck	Anaesthesist 1984			Elective surgery patients
6	Quayle	Clin Nutr 1984			Patients not critically ill
7	Bauer	Infusionstherapie 1984			Unclear if ICU patients
8	Costalat	Chirugie 1985			Elective surgery patients
9	Adams	J Trauma 1986			
10	Bower	Arch Surg 1986			Elective surgery pts
11	Fletcher	Surgery 1986			Surgery patients
12	Hadley	Neurosurgery 1986			
13	Young	J Neurosurg 1987			
14	Young	J Neurosurg 1987			No significant outcomes
15	Peterson	Surgery 1988			
16	Cerra	Surgery 1988			
17	Greenberg	Gut 1988		\checkmark	Not ICU pts
18	Moore	J Trauma 1989			
19	Hamaoui	JPEN J Parenter Enteral Nutr 1990		\checkmark	Elective surgery pts.
20	Kudsk	Ann Surg 1992			
21	Moore	Ann Surg 1992			Meta-analysis, excluded based on methodology
22	Von Meyenfeldt	Clin Nutr 1992			Elective surgery pts
23	Gonzalez-Huix	Am J Gastroenterol 1993			Cancer pts, not ICU pts
24	lovinelli	JPEN J Parenter Enteral Nutr. 1993			Elective surgery pts
25	Dunham	Trauma 1994			
26	Kudsk	Gut 1994			Duplicate study of '92
27	Wicks	Lancet 1994			Elective surgery pts
28	Borzotta	J Trauma 1994			
29	Hadfield	Am J Resp Crit Care Med 1995			
30	Hernandez-Aranda	Nutr Hosp 1996			Not RCT, not ICU patients
31	Suchner	Nutrition 1996			No significant outcomes
32	Baigrie	Aust N Z J Surg. 1996			Elective surgery
33	Kalfrantzos	Brit Journal Surg 1997		1	
34	Georgiannos	Int Surg 1997			Not ICU patients
35	Reynolds	JPEN J Parenter Enteral Nutr 1997			Cancer pts, not ICU pts
36	Gioanotti	Arch Surg 1997			Cancer pts, not ICU pts

37	Sand	Eur J Surg 1997		Cancer pts, not ICU pts
38	Shirabe	Hepatogastroenterology 1997		Cancer pts, not ICU pts
39	McClave	JPEN J Parenter Enteral Nutr 1997		Not ICU pts
40	Windsor	Gut 1998		Not ICU pts.
41	Braga	Crit Care Med 1998		Elective surgery patients
42	Woodcock	Nutrition 2001		
43	Braunschweig	Am J Clin Nutr 2001	\checkmark	Meta-analysis, individual studies used
44	Pacelli	Arch Surg 2001		Elective surgery pts.
45	Braga	Crit Care Med 2001		Elective surgery patients
46	Bozetti	Lancet 2001		Elective surgery patients
47	Heyland	Can J Surg 2001	\checkmark	Meta-analysis but excluded because population is surgical pts
48	Braunschweig	Am J Clin Nutr. 2001	\checkmark	Meta-analysis, individual studies used
49	Huang	Clin Nutr 2002		Not Randomized
50	Abou-Assi	Am J Gastroenterology 2002		Not ICU pts
51	Rayes	Nutrition 2002		Elective surgery pts
52	Louie	Can J Surg 2005		Not ICU pts
53	Peter	Crit Care Med. 2005	\checkmark	Meta-analysis, but individual studies used
54	Simpson	Intensive Care Med 2005		Meta-analysis, but individual studies used
55	Eckerwall	Ann Surg 2006		Not ICU pts
56	Petrov	Dig Surg 2006		Unable to confirm if pts were in ICU. Contacted authors but did not get needed details
57	Chen	Burns 2007		No clinical outcomes
58	Petrov	Clinical Nutrition 2007	\checkmark	Systematic review, Individual studies looked at
59	Lam	Burns 2008		Pseudo-randomized
<mark>60</mark>	Petrov	Aliment Pharmacol Ther	✓	Systematic review, Individual studies looked at

I = included, E = excluded

Reference List

- 1. Lim ST, Choa RG, Lam KH, Wong J, Ong GB. Total parenteral nutrition versus gastrostomy in the preoperative preparation of patients with carcinoma of the oesophagus. Br J Surg. 1981 Feb;68(2):69-72.
- Sako K, Loré JM, Kaufman S, Razack MS, Bakamjian V, Reese P. Parenteral hyperalimentation in surgical patients with head and neck cancer: a randomized study. J Surg Oncol. 1981;16(4):391-402.
- 3. Rapp RP, Young DB, Twyman D. The favorable effect of early parenteral feeding on survival in head-injured patients. J Neurosurgery 1983;58:906-12.
- 4. Seri S, Aquilio E. Effects of early nutritional support in patients with abdominal trauma. It J Surg Sci 1984;14:223-7.
- 5. Wiedeck H, Merkle N, Herfarth Ch, Grunert A. Postoperative enteral nutrition following resection of the colon. Anaesthesist 1984;33:63-67.
- 6. Quayle AR, Mangnall D, Clark RG. A comparison of immediate post-operative enteral and parenteral nutrition in patients with gastric carcinoma. Clin Nutr 1984;3:35-39.
- 7. Bauer E, Graber R, Brodike R et al. Ernahrungsphysiologische, immunologische und klinische parameter bei prospektiv randomisierten patienten unter enteraler oder parenteraler ernahrungstherapie nach dickdarmoperationen. Infusionstherape 1984;11:165-167.
- 8. Costalat G, Vernhet J. Nutrition enterale postoperatoire precoce par catheter jejunal en chirurgie digestive lourde. Comparaison avec la nutrition parenterale exclusve. Chirugle 1985 ;111 :708-714.
- 9. Hadley MN, Grahm TW, Harrington T. Nutritional support and neurotrauma: A critical review of early nutrition in forty-five acute head injury patients. Neurosurgery 1986;19:367-73.
- 10. Adams S, Dellinger EP, Wertz MJ. Enteral versus parenteral nutritional support following laparotomy for trauma: A randomized prospective trial. J Trauma 1986;26(10):882-891.
- 11. Bower RH, Talamini MA, Sax HC. Postoperative enteral vs parenteral nutrition: A randomized controlled trial. Arch Surg 1986;121:1040-5.
- 12. Fletcher JP, Little JM. A comparison of parenteral nutrition and early postoperative enteral feeding on the nitrogen balance after major surgery. Surgery 1986;100:21-4.
- 13. Young B, Ott L, Twyman D et al. The effect of nutritional support on outcome from severe head injury. J Neurosurg 1987;67:668-76.
- 14. Young B, Ott L, Haack D. Effect of total parenteral nutrition upon intracranial pressure in severe head injury. J Neurosurg 1987;67:76-80.

- 15. Peterson VM, Moore EE, Jones TN, Rundus C, Emmett M, Moore FA, McCroskey BL, Haddix T, Parsons PE. Total enteral nutrition versus total parenteral nutrition after major torso injury: attenuation of hepatic protein reprioritization. Surgery 1988 Aug;104(2):199-207.
- 16. Cerra FB, McPherson JP, Konstantinides FN, Konstantinides NN, Teasley KM. Enteral nutrition does not prevent multiple organ failure syndrome (MOFS) after sepsis. Surgery 1988;104:727-33.
- 17. Greenberg GR, Fleming CR, Jeejeebhoy KN, Rosenberg IH, Sales D, Tremaine WJ. Controlled trial of bowel rest and nutritional support in the management of Crohn's disease. Gut. 1988 Oct;29(10):1309-15.
- 18. Moore FA, Moore EE, Jones TN, McCroskey BL, Peterson VM. TEN versus TPN following major abdominal trauma Reduced septic morbidity. J Trauma 1989;29:916-923.
- 19. Hamaoui E, Lefkowitz R, Olender L et al. Enteral nutrition in the early postoperative period: A new semi-elemental formula versus total parenteral nutrition. JPEN:J Parenter Enteral Nutr 1990;14:501-7.
- 20. Kudsk KA, Croce MA, Fabian TC et al. Enteral versus parenteral feeding: Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 1992;215:503-13.
- 21. Moore FA, Feliciano DV, Andrassy RJ et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications: The results of a meta-analysis. Ann Surg 1992;216:172-83.
- 22. Clin Nutr. 1992 Aug;11(4):180-6. Perioperative nutritional support: a randomised clinical trial. Von Meyenfeldt MF, Meijerink WJ, Rouflart MM, Builmaassen MT, Soeters PB.
- González-Huix F, Fernández-Bañares F, Esteve-Comas M, Abad-Lacruz A, Cabré E, Acero D, Figa M, Guilera M, Humbert P, de León R, et al. Enteral versus parenteral nutrition as adjunct therapy in acute ulcerative colitis.Am J Gastroenterol. 1993 Feb;88(2):227-32.
- 24. Iovinelli G, Marsili I, Varrassi G. Nutrition support after total laryngectomy. JPEN J Parenter Enteral Nutr. 1993 Sep-Oct;17(5):445-8.
- Dunham CM, Frankenfield D, Belzberg H, Wiles C, Cushing B, Grant Z. Gut failure-predictor of or contributor to mortality in mechanically ventilated blunt trauma patients? J Trauma 1994;37(1):30-34.
- 26. Kudsk KA. Gut mucosal nutritional support Enteral nutrition as primary therapy after multiple system trauma. Gut 1994;35:S52-S54.
- 27. Wicks C, Somasundaram S, Bjarnason I et al. Comparison of enteral feeding and total parenteral nutrition after liver transplantation. Lancet 1994; :837-40.
- 28. Borzotta AP, Pennings J, Papasadero B et al. Enteral versus parenteral nutrition after severe closed head injury. J Trauma 1994;37(3):459-468.

- 29. Hadfield RJ, Sinclair DG, Houldsworth PE, Evans TW. Effects of enteral and parenteral nutrition on gut mucosal permeability in the critically ill. Am J Respi Crit Care Med 1995;152:1545-8.
- 30. Hernandez-Aranda JC, Gallo-Chico B, Ramirez-Barba EJ. Nutritional support in severe acute pancreatitis. Controlled clinical trial. Nutr Hosp 1996; :160-6.
- 31. Suchner U, Senftleben U, Eckart T et al. Enteral versus parenteral nutrition: Effects on gastrointestinal function and metabolism. Nutrition 1996;12:13-22.
- 32. Baigrie RJ, Devitt PG, Watkin DS. Enteral versus parenteral nutrition after oesophagogastric surgery: a prospective randomized comparison. Aust N Z J Surg. 1996 Oct;66(10):668-70.
- Kalfarentzos F, Kehagias J, Mead N, Kokkinis K, Gogos CA. Enteral nutrition is superior to parenteral nutrition in severe acute pancreatitis: Results of a randomized prospective trial. British J Surg 1997;84:1665-9.
- 34. Georgiannos SN, Renaut AJ, Goode AW. Short-term restorative nutrition in malnourished patients: Pro's and con's of intravenous and enteral alimentation using compositionally matched nutrients. Int Surg 1997;82:301-306.
- 35. Reynolds JV, Kanwar S, Welsh FK, Windsor AC, Murchan P, Barclay GR, Guillou PJ. Does the route of feeding modify gut barrier function and clinical outcome in patients after major upper gastrointestinal surgery? JPEN J Parenter Enteral Nutr. 1997 Jul-Aug;21(4):196-201.
- Gianotti L, Braga M, Vignali A, Balzano G, Zerbi A, Bisagni P, Di Carlo V. Effect of route of delivery and formulation of postoperative nutritional support in patients undergoing major operations for malignant neoplasms. Arch Surg. 1997 Nov;132(11):1222-9.
- 37. Sand J, Luostarinen M, Matikainen M. Enteral or parenteral feeding after total gastrectomy: prospective randomised pilot study. Eur J Surg. 1997 Oct;163(10):761-6.
- 38. Shirabe K, Matsumata T, Shimada M, Takenaka K, Kawahara N, Yamamoto K, Nishizaki T, Sugimachi K. A comparison of parenteral hyperalimentation and early enteral feeding regarding systemic immunity after major hepatic resection--the results of a randomized prospective study.Hepatogastroenterology. 1997 Jan-Feb;44(13):205-9.
- McClave SA, Greene LM, Snider HL, Makk LJ, Cheadle WG, Owens NA, Dukes LG, Goldsmith LJ. Comparison of the safety of early enteral vs parenteral nutrition in mild acute pancreatitis. JPEN J Parenter Enteral Nutr. 1997 Jan-Feb;21(1):14-20.
- 40. Windsor ACJ, Kanwar S, Li AGK et al. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. Gut 1998;42:431-5.
- 41. Braga M, Gianotti L, Vignali A, Cestari A, Bisagni P, Di C, V. Artificial nutrition after major abdominal surgery: Impact of route of administration and composition of the diet. Crit Care Med 1998;26:24-30.

- 42. Woodcock NP, Zeigler D, Palmer MD, Buckley P, Mitchell CJ, Macfie J. Enteral versus parenteral nutrition: A pragmatic study. Nutrition 2001;17:1-12.
- 43. Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral nutrition: A meta-analysis. Am J Clin Nutr 2001;74:534-42.
- 44. Pacelli F, Bossola M, Papa V et al. Enteral vs parenteral nutrition after major abdominal surgery: An even match. Arch Surg 2001;136:933-6.
- 45. Braga M, Gianotti L, Gentilini O, Parisi V, Salis C, Di C, V. Early postoperative enteral nutrition improves gut oxygenation and reduces costs compared with total parenteral nutrition. Crit Care Med 2001;29:242-8.
- 46. Bozzetti F, Braga M, Gianotti L, Gavazzi C, Mariani L. Postoperative enteral versus parenteral nutrition in malnourished patients with gastrointestinal cancer: A randomised multicentre trial. Lancet 2001;358:1487-92.
- 47. Heyland DK Montalvo M, MacDonald S et al. Total parenteral nutrition in the surgical patient: a meta-analysis. Can J Surg 2001;44(2):102-111.
- 48. Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr. 2001 Oct;74(4):534-42.
- 49. Huang YC, Yen CE, Cheng CH, Jih KS, Kan MN. Nutritional status of mechanically ventilated critically ill patients: comparison of different types of nutritional support. Clin Nutr 2002:101-7.
- 50. Abou-Assi S. Craig K, O'Keefe SJ. Hypocaloric jejunal feeding is better than total parenteral nutrition in acute pancreatitis : results of a randomized comparative study. Am J Gastroenterology 2002;97(9):2255-2262.
- Rayes N, Hansen S, Seehofer D, Müller AR, Serke S, Bengmark S, Neuhaus P. Early enteral supply of fiber and Lactobacilli versus conventional nutrition: a controlled trial in patients with major abdominal surgery. Nutrition. 2002 Jul-Aug;18(7-8):609-15.
- 52. Louie BE, Noseworthy T, Hailey D, Gramlich LM, Jacobs P, Warnock GL. 2004 MacLean-Mueller prize enteral or parenteral nutrition for severe pancreatitis: a randomized controlled trial and health technology assessment. Can J Surg. 2005 Aug;48(4):298-306.
- 53. Peter JV, Moran JL, Phillips-Hughes J. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005 Jan;33(1):213-20.
- 54. Simpson F, Doig GS. Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med. 2005 Jan;31(1):12-23. Epub 2004 Dec 9.
- 55. Eckerwall GE, Axelsson JB, Andersson RG. Early nasogastric feeding in predicted severe acute pancreatitis. A clinical, randomized study. Ann Surg 2006;244(6):959-967.

- 56. Petrov MS, Kukosh MV, Emelyanov NV. A randomized controlled trial of enteral versus parenteral feeding in patients with predicted severe acute pancreatitis shows a significant reduction in mortality and in infected pancreatic complications with total enteral nutrition. Dig Surg. 2006;23(5-6):336-44; discussion 344-5. Epub 2006 Dec 12.
- 57. Chen Z, Wang S Yu B. A comparison study between early enteral nutrition and parenteral nutrition in severe burn patients. Burns 2007;33:708-712.
- 58. Petrov MS, Zagainov VE. Influence of enteral versus parenteral nutrition on blood glucose control in acute pancreatitis: a systematic review. Clin Nutr. 2007 Oct;26(5):514-23. Epub 2007 Jun 7.
- 59. Lam NN, Tien NG, Khoa CM. Early enteral feeding for burned patients--an effective method which should be encouraged in developing countries. Burns. 2008 Mar;34(2):192-6. Epub 2007 Sep 4.
- 60. Petrov MS, Pylypchuk RD, Emelyanov NV. Systematic review: nutritional support in acute pancreatitis. Aliment Pharmacol Ther. 2008 Sep 15;28(6):704-12.