4.1a. EN Composition: Diets Supplemented with Arginine and Select Other Nutrients* May 2015

2015 Recommendation: Based on 5 level 1 studies and 22 level 2 studies, we do not recommend diets supplemented with arginine and other select nutrients* be used for critically ill patients.

2015 Discussion: The committee noted the inclusion of one new small study in head injury patients (n =40, Khorana 2009), the data from which did not alter the effect on mortality. Other outcomes from this study were not reported in a manner that allowed aggregation with existing data. There continues to be no overall signal of benefit or of harm in all ICU patients or in the subgroup of studies of trauma patients. The committee agreed that the previous concerns from the updates in 2009 and 2013 regarding the potential for harm (increased mortality) associated with the use of diets supplemented with arginine and other nutrients harm in septic patients (Bower 1995, Dent 2003, Bertolini 2003) were still relevant. Hence the recommendation for caution against the use of diets supplemented with arginine and other select nutrients* remain unchanged. It was emphasized that this recommendation does not apply to the elective surgery population where the evidence is contrary to critically ill patients and the use of such formulas is associated with a significant reduction in infections (1).

(1) Drover JW, Dhaliwal R, Weitzel L, Wischmeyer PE, Ochoa JB, Heyland DK. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg. 2011 Mar;212(3):385-99

2013 Recommendation: Based on 4 level 1 studies and 22 level 2 studies, we do not recommend diets supplemented with arginine and other select nutrients* be used for critically ill patients.

2013 Discussion: The committee noted that with the addition of 2 new RCTs (Pearce 2006 and Kuhls 2007) there were no changes in the treatment effect on mortality or infections. The results of the subgroup analysis, which shows that in higher quality studies, diets supplemented with arginine and other nutrients had no effect on mortality whereas in lower quality studies there was a trend towards a reduction in mortality. As in 2009, in light of the potential harm (increased mortality) associated with the use of diets supplemented with arginine and other nutrients, the reduction in length of stay and mechanical ventilation is difficult to interpret. Given the possible harm in septic patients (Bower, Ross, Bertolini) and the increased costs, the committee decided to recommend against their use in critically ill patients.

Semi Quantitative Scoring

Value	Definition	2013 Score (0,1,2,3)	2015 Score (0,1,2,3)
Effect size	Magnitude of the absolute risk reduction attributable to the intervention listeda higher score indicates a larger effect size	0	0
Confidence interval	95% confidence interval around the point estimate of the absolute risk reduction, or the pooled estimate (if more than one trial)a higher score indicates a smaller confidence interval	1	1
Validity	Refers to internal validity of the study (or studies) as measured by the presence of concealed randomization, blinded outcome adjudication, an intention to treat analysis, and an explicit definition of outcomesa higher score indicates presence of more of these features in the trials appraised	2	2
Homogeneity or Reproducibility	Similar direction of findings among trialsa higher score indicates greater similarity of direction of findings among trials	2	2
Adequacy of control group	Extent to which the control group represented standard of care (large dissimilarities = 1, minor dissimilarities=2, usual care=3)	3	3
Biological plausibility	Consistent with understanding of mechanistic and previous clinical work (large inconsistencies =1, minimal inconsistencies =2, very consistent =3)	2	2
Generalizability	Likelihood of trial findings being replicated in other settings (low likelihood i.e. single centre =1, moderate likelihood i.e. multicentre with limited patient population or practice setting =2, high likelihood i.e. multicentre, heterogenous patients, diverse practice settings =3.	2	2
Low cost	Estimated cost of implementing the intervention listeda higher score indicates a lower cost to implement the intervention in an average ICU	2	2
Feasible	Ease of implementing the intervention listeda higher score indicates greater ease of implementing the intervention in an average ICU	2	2
Safety	Estimated probability of avoiding any significant harm that may be associated with the intervention listeda higher score indicates a lower probability of harm	1	1

The term "immune-enhancing diets" has been used to describe products that have immune-modulating properties such as arginine, glutamine, omega-3 fatty acids, and others. There are several commercially available enteral feeding products that contain varying amounts of arginine in combination with other immune modulating nutrients. Since arginine is the common ingredient across these various formulas, we elected to describe this section as "Diets supplemented with Arginine and other select Nutrients".

* (refer to tables for specific nutrients)

4.1a. EN Composition: Diets Supplemented with Arginine and Select Other Nutrients*

Question: Compared to standard enteral feeds, do diets supplemented with arginine and other nutrients result in improved clinical outcomes in critically ill patients?

Summary of Evidence: There were 25 studies reviewed, 5 level 1 studies and 20 level 2 studies. The data from the Bertolini study was not included in the meta- analysis as the control feed was parenteral nutrition, not an enteral formula. The Kuhls 2007 study had two interventions including one comparing enteral nutrition supplemented with arginine plus ß hydroxyl methyl butyrate & glutamine (Juven) to standard enteral nutrition alone, the data for which is included in this section. The data pertaining to the second intervention from this study comparing enteral nutrition supplemented with ß hydroxyl methyl to standard enteral nutrition alone is described in section 6.5 EN Other formulas. There was only one study in which arginine was given without other select nutrients (Tsuei 2004***), hence sensitivity analyses were done without this study.

Mortality: All 25 studies reported on mortality and when the results of the 25 studies (Bertolini 2003 excluded) were aggregated, there was no effect on mortality (RR 1.06, 95% CI 0.93, 1.20, p=0.40, heterogeneity l²=0%; figure 1a). When a sensitivity analysis was done which excluded the Tsuei study, there also was no effect on mortality (RR 1.05, 95% CI 0.92, 1.21, p=0.46, heterogeneity l²=4%; figure 1b). A subgroup analysis of high quality studies (score \geq 8) vs. low quality studies (score < 8) showed that in higher quality studies, diets supplemented with arginine had no effect on mortality when including the Tsuei study (RR 1.09, 95% CI 0.95, 1.25, p=0.21, heterogeneity l²=2%; figure 1a) and excluding the Tsuei study (RR 1.10, 95% CI 0.95, 1.25, p=0.21, heterogeneity l²=2%; figure 1a) and excluding the Tsuei study (RR 1.10, 95% CI 0.94, 1.28, p=0.24, heterogeneity l²=6%; figure 1b); whereas in lower quality studies diets supplemented with arginine and other nutrients were associated with a trend towards a reduction in mortality (RR 0.75, 95% CI 0.49, 1.15, p=0.19, heterogeneity l²=0%; figure 1a). The difference between these two subgroups was not statistically significant (p=0.10). When the studies of trauma including the Tsuei study (RR 1.04, 95% CI 0.56, 1.93, p=0.91, heterogeneity l²=0%; figure 2a) and excluding the Tsuei study (RR 1.00, 95% CI 0.53, 1.88, p=1.00, heterogeneity l²=0%; figure 2b) vs. non-trauma patients (RR 1.07, 95% CI 0.87, 1.30, p=0.52, heterogeneity l²=29%; figure 2a) were compared, there were no differences in mortality. The difference between these two subgroups was not statistically significant (p=0.93). When the Tsuei study was considered by itself, there was no effect on mortality (RR 2.57, 95% CI 0.12, 57.44, p=0.55).

Infections: Based on the 14 studies that reported on the number of infectious complications, there was no difference in the rate of infectious complications in the analysis that included the Tsuei study (RR 0.99 95% CI, 0.85, 1.15, p=0.88, heterogeneity I²=48%; figure 3a) and the analysis that excluded the Tsuei study (RR 0.98, 95% CI 0.83, 1.15, p=0.81, heterogeneity I²=52%; figure 3b). Subgroup analysis also showed no differences in infectious complications when high quality studies including the Tsuei study (RR 0.99, 95% CI 0.83, 1.17, p=0.87, heterogeneity I²=52%; figure 3a) and excluding the Tsuei study (RR 0.98, 95% CI 0.81, 1.17, p=0.80, heterogeneity I²=59%; figure 3b) were compared to lower quality studies (RR 0.97, 95% CI 0.65, 1.45, p=0.89, heterogeneity I²=54%; figure 3a), and when studies of trauma patients including the Tsuei study (RR 0.86, 95% CI 0.52, 1.42, p=0.55, heterogeneity I²=63%; figure 4a) and excluding the Tsuei study (RR 0.79, 95% CI 0.41, 1.50, p=0.46, heterogeneity I²=71%;

figure 4b) were compared to studies of non-trauma patients (RR 1.00, 95% CI 0.86, 1.16, p=0.96, heterogeneity I²=45%; figure 4a). When the Tsuei study was considered by itself, there was no effect on infectious complications (RR 1.13, 95% CI 0.57, 2.25, p=0.73).

Length of stay & duration of mechanical ventilation: Diets supplemented with arginine and other nutrients had no effect on hospital length of stay when the Tsuei study was included in the analysis (WMD -1.38, 95% CI -4.73, 1.97, p=0.42, heterogeneity I²=84%; figure 5a) and when the Tsuei study was excluded from the analysis (WMD -0.89, 95% CI -4.53, 2.74, p=0.63, heterogeneity I²=85%; figure 5b); or on ICU length of stay when the Tsuei study was included in the analysis (WMD -0.77, 95% CI -2.46, 0.92, p=0.37, heterogeneity I²=68%; figure 6a) or when the Tsuei study was excluded from the analysis (WMD -0.44, 95% CI -2.31, 1.42, p=0.64, heterogeneity I²=70%; figure 6b). When the Tsuei study was considered by itself, there was no effect on hospital length of stay (WMD -5.00, 95% CI -16.17, 6.17, p=0.38) or ICU length of stay (WMD -3.00, 95% CI -9.75, 3.75, p=0.38).

Duration of mechanical ventilation: Diets supplemented with arginine and other nutrients were associated with a trend towards a reduction in mechanical ventilation when the Tsuei study was included in the analysis (WMD -1.30, 95% CI -2.72, 0.12, p=0.07, heterogeneity I²=73%; figure 7a) and when the Tsuei study was excluded from the analysis (WMD -1.02, 95% CI -2.53, 0.49, p=0.19, heterogeneity I²=74%; figure 7b). When the Tsuei study was considered by itself, there was no effect on duration of mechanical ventilation (WMD -4.00, 95% CI -10.50, 2.50, p=0.23).

Conclusions:

- 1) Diets supplemented with arginine and other nutrients have no effect on overall mortality in critically ill patients.
- 2) Diets supplemented with arginine and other nutrients have no effect on rate of infectious complications in critically ill patients.
- 3) Diets supplemented with arginine and other nutrients have no effect on hospital length of stay, ICU length of stay and may possibly reduce duration of mechanical ventilation in critically ill patients.

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis. Level 2 study: If any one of the above characteristics are unfulfilled

Study	Population	Methods	Intervention	Mortalit	:y # (%)‡	Infectio	ons # (%) Control
Study	Fopulation	(score)		Arginine	Control	Arginine	Control
1) Cerra 1990	Surgical ICU N=20	C.Random: yes ITT: no Blinding: yes (8)	Impact (see below) vs. Osmolite HN non-isonitrogenous diets	1/11 (9)	1/9 (11)	NR	NR
2) Gottschlich 1990	Critically ill burn patients from 2 ICUs N=31	C.Random: not sure ITT: yes Blinding: yes (10)	Experimental formula (arginine, histidine, cysteine, ω 3 fatty acids) vs. Osmolite HN + protein isonitrogenous diets	2/17 (12)	1/14 (7)	NR	NR
3) Brown 1994	Trauma N=37	C. Random: not sure ITT: no Blinding: no (5)	Experimental formula (arginine, β carotene, lactalbumin, α linoleic acid) vs. Osmolite HN + protein isonitrogenous diets	0/19 (0)	0/18 (0)	3/19 (16)	10/18 (56)
4) Moore 1994	Trauma pts from 5 ICUs N=98	C.Random: not sure ITT: no Blinding: no (5)	Immun-Aid <i>(see below)</i> vs. Vivonex TEN non-isonitrogenous diets	1/51 (2)	2/47 (4)	9/51 (18)	10/47 (21)
5) Bower 1995	Mixed from 8 ICUs N=296	C.Random: yes ITT: no Blinding: yes (9)	Impact (<i>see below</i>) vs.Osmolite isonitrogenous diets	24/153 (16)	12/143 (8)	86/153 (56)	90/143 (63)
6) Kudsk 1996*	Trauma N=35	C.Random: yes ITT: yes Blinding: yes (10)	Immun-Aid <i>(see below)</i> vs. Promote + protein supplement isonitrogenous diets	1/17 (6)	1/18 (6)	5/16 (31)	11/17 (65)
7) Engel 1997	Trauma N=36	C.Random: not sure ITT: yes Blinding: no (6)	Impact (see below) vs. oligopeptide standard (Survimed OPD) non-isonitrogenous diets	ICU 7/18 (39)	ICU 5/18 (28)	6/18 (33)	5/18 (28)

Table 1. Randomized studies evaluating diets supplemented with arginine and other nutrients in critically ill patients

8) Mendez 1997	Trauma N=43	C.Random: no ITT: no Blinding: yes (6)	Experimental (arginine, selenium, carnitine, taurine) vs. Osmolite HN + protein isonitrogenous diets	ICU 1/22 (4.5)	ICU 1/21 (5)	19/22 (86)	12/21 (57)
9) Rodrigo 1997	Mixed ICU N=30	C. Random :no ITT: yes Blinding: no (5)	Impact (<i>see below</i>) vs. standard (Precitene high protein) isonitrogenous diets	ICU 2/16 (13)	ICU 1/14 (7)	5/16 (31)	3/14 (21)
10) Saffle 1997	Bums N=50	C. Random: no ITT: no Blinding: double (8)	Impact (see below) vs. Replete (high protein, ω 3 fatty acids, glutamine) isonitrogenous diets	5/25 (21)	3/24 (13)	2.36 per patient	1.71 per patient
11) Weimann 1998	Trauma N=29	C.Random: no ITT: no Blinding: yes (9)	Impact <i>(see below)</i> vs. standard formula (Sandoz) isonitrogenous diets	2/16 (13)	4/13 (31)	NR	NR
12) Atkinson 1998	Mixed ICU N=390	C.Random: no ITT: yes Blinding: yes (11)	Impact <i>(see below)</i> vs. specially prepared isocaloric isonitrogenous diets	95/197 (48)	85/193 (44)	NR	NR
13) Galban 2000	Critically ill septic patients from 6 ICUs N=176	C.Random:yes ITT: no Blinding: no (6)	Impact <i>(see below)</i> vs standard (Precitene high protein) isonitrogenous diets	17/89 (19)	28/87 (32)	39/89 (44)	44/87 (51)
14) Capparos 2001	Mixed ICU patients from 15 ICUs N=235	C.Random:yes ITT: yes Blinding: yes (10)	Experimental formula (glutamine, arginine,75gpro/L, vit A,C E, MCT & fibre) vs control 62.5 g pro/L non-isonitrogenous diets]	27/130 (21)	30/105 (29)	64/130 (49)	37/105 (35)
15) Conejero 2002	SIRS patients from 11 ICUs N=84	C.Random: yes ITT: no Blinding: yes (8)	Experimental formula 8.5 g/L arginine, 27 g/L glutamine,52.5 g pro/L) vs. control 66.2 g pro/L	28-day 14/43 (33)	28-day 9/33 (27)	11/43 (26)	17/33 (52)

16) Dent 2003	Mixed from 14 ICUs N=170	C.Random: yes ITT: yes Blinding: Yes (11)	Optimental (arginine, Vit E, β carotene structured lipids, MCT) vs. Osmolite HN isonitrogenous diets]	20/87 (23)	8/83 (10)	57/87 (66)	52/83 (63)
17) Bertolini 2003**	Patients with severe sepsis from 33 ICUs N=39	C.Random:yes ITT: yes Blinding: no (10)	Perative <i>(see below)</i> vs. parenteral nutrition non-isocaloric diets	ICU 8/18(44) 28-day 8/18 (44)	ICU 3/21(14) 28-day 5/21 (24)	NR	NR
18) Chuntrasakul 2003	Trauma, burns N=36	C.Random: no ITT: yes Blinding: single (6)	Neommune (12.5 g/L arginine, 62.5 g pro/L) vs. Traumacal (83 g pro/L, 6.25 g/L glutamine and fish oils) non-isocaloric, non-isonitrogenous diets	1/18 (5)	1/18 (5)	NR	NR
19) Tsuei 2004***	Trauma with ISS>20 N=25	C.Random: no ITT: yes* Blinding: single (9)	EN (Deliver 2.0) plus 30 gms arginine vs. EN (Deliver 2.0) plus 28 gms Casec isocaloric, isonitrogenous diets	1/13 (8) RR 2.57, 95% CI (0/11 (0) 0.12, 57.44, p=0.55	8/13 (61) RR 1.13, 95% Cl	6/11 (55) 0.57, 2.25, p=0.73
20) Kieft 2005	Mixed ICU patients from 2 ICUs N=597	C.Random:yes ITT: yes Blinding: double (10)	Stresson (Nutricia) <i>(see below)</i> vs. standard control 50 g pro/L isocaloric, non-isonitrogenous diets	ICU 84/302 (28) Hospital 114/302 (38) 28-day 93/302 (34)	ICU 78/295 (26) Hospital 106/295 (36) 28-day 82/295 (30)	130/302 (43)	123/295 (42)
21) Pearce 2006	Acute pancreatitis patients N=31	C.Random: yes ITT: no Blinding: double (9)	Complete prototype formula with feed with feed with glutamine, arginine, omega 3 fatty acids and antioxidants vs. control prototype feed isonitrogenous, isocaloric diets	0/15 (0)	3/16 (19)	NR	NR
22) Wibbenmeyer 2006	Burns with >20% TSBA N=23	C.Random: no ITT: yes Blinding: double (10)	Crucial (19 g/L arginine, 63 g pro/L, 2.9 gms fish oils) vs. control (67 g pro/L) isonitrogenous, isocaloric diets	2/12 (17)	0/11	9/12 (75)	7/11 (64)

23) Kuhls 2007****	Trauma patients in ICU Injury Severity Score >18 N=100	C.Random: not sure ITT: no Blinding: double (10)	Standard EN + 3 gms ß hydroxyl methyl butyrate (HMB) + 14 gm arginine + 14 gms glutamine (Juven) vs. standard EN + isonitrogenous placebo supplement 25kcal/kg/day, 1.5g pro/kg/day isonitrogenous, isocaloric diets	3/22 (14)	2/22 (9)	4.0 ± 2.81 (per patient)	4.6 ± 2.81 (per patient)
24) Beale 2008	SIRS patients N=55	C.Random: no ITT: yes Blinding: double (9)	Intestamin (30 g glutamine) +Reconvan (10 g glutamine/L, 6.7 gm arginine/L), 98 g pro/L vs. control supplement +Fresubin 38 g pro/L. Both received 20% IV glucose nonisonitrogenous, isocaloric diets	ICU 6/27 (21) Hospital 7/27 (25) 28-day 5/27 (18) 6-month 10/27 (36)	ICU 4/27 (15) Hospital 7/28 (25) 28-day 3/28 (11) 6-month 8/27 (30)	NR	NR
25) Khorana 2009	Moderate to severe head injury patients requiring neurosurgery N=40	C.Random: yes ITT: yes Blinding: double (12)	EN formula Neomune (polymeric, 12.5 g/L arg, 6.25 g/L glutamine) vs EN formula Panenteral (polymeric) modified with the addition of protein.	0/20	0/20	Wound infection 0/20 Chest infection 7/20 (35) UTI 0/20 GI bleed 1/20 (5)	Wound infection 0/20 Chest infection 12/20 (60) UTI 1/20 (5) GI bleed 0/20

Study	Length of S	Stay (days)	Duration of V	entilation (days)
Study	Arginine	Control	Arginine	Control
1) Cerra 1990	36.7 ± 8.5	54.7 ± 10.5	NR	NR
2) Gottschlich 1990	NR	NR	9 ± 4.5	10 ± 2.5
3) Brown 1994	NR	NR	NR	NR
4) Moore 1994	$\begin{array}{c} \textbf{ICU}\\ 5.3\pm0.8\\ \textbf{Hospital}\\ 14.6\pm1.3 \end{array}$	ICU 8.6 ± 3.1 Hospital 17.2 ± 2.8	1.9 ± 0.9	5.3 ± 3.1
5) Bower 1995	Hospital 27.6 ± 23	Hospital 30.9 ± 26	NR	NR
6) Kudsk 1996*	$\begin{array}{c} \textbf{ICU}\\ 5.8\pm1.8\\ \textbf{Hospital}\\ 18.3\pm2.8 \end{array}$	ICU 9.5 ± 2.3 Hospital 32.6 ± 7	2.4 ± 1.3	5.4 ± 2.0
7) Engel 1997	ICU 19 ± 7.4 Hospital NR	ICU 20.5 ± 5.3 Hospital NR	14.8 ± 5.6	16 ± 5.6
8) Mendez 1997	$\begin{array}{c} \textbf{ICU}\\ 18.9\pm20.7\\ \textbf{Hospital}\\ 34\pm21.2 \end{array}$	ICU 11.1 ± 6.7 Hospital 21.9 ± 11	16.5 ± 19.4	9.3 ± 6

Table 1. Randomized studies evaluating diets supplemented with arginine and other nutrients in critically ill patients (continued)

9) Rodrigo 1997	ICU 8 ± 7.3 Hospital NR	ICU 10 ± 2.7 Hospital NR	NR	NR
10) Saffle 1997	Hospital 37 ± 4	Hospital 38 ± 4	22 ± 3	21 ± 2
11) Weimann 1998	$\begin{array}{c} \textbf{ICU}\\ 31.4 \pm 23.1\\ \textbf{Hospital}\\ 70.2 \pm 53 \end{array}$	ICU 47.4 ± 32.8 Hospital 58.1 ± 30	21.4 ± 10.8	27.8 ± 14.6
12) Atkinson 1998	$\begin{array}{c} \textbf{ICU}\\ 10.5\pm13.1\\ \textbf{Hospital}\\ 20.6\pm26 \end{array}$	ICU 12.2 ± 23.2 Hospital 23.2 ± 32	8±11.1	9.4 ± 17.7
13) Galban 2000	ICU 18.2 ± 12.6 Hospital NR	ICU 16.6 ± 12.9 Hospital NR	12.4 ± 10.4	12.2 ± 10.3
14) Capparos 2001	ICU 15 (9.8-25) Hospital 29 (16.8-51)	ICU 13 (8.8-20.3) Hospital 26 (17.8-42)	10 (5-18)	9 (5-14)
15) Conejero 2002	14 (4-63)	15(4-102)	14 (5-25)	14 (5-29)
16) Dent 2003	$\begin{matrix} \textbf{ICU} \\ 14.8 \pm 19.6 \\ \textbf{Hospital} \\ 25.4 \pm 26 \end{matrix}$	ICU 12 ± 10.9 Hospital 20.9 ± 17	14.3 ± 22.4	10.8 ± 12.8
17) Bertolini 2003**	13.5 (9-26)	15 (11-29)	NR	NR

Canadian Clinical Practice Guidelines

ICU 3.4 ± 5.8 Hospital 44.9 ± 30.2	ICU 7.8 ± 13.6 Hospital 28.8 ± 25.7	2.7 ± 5.2	7.4 ± 1.3
		10 ± 5 (13) WMD -4.00, 95% CI	14 ± 10 (11) -10.50, 2.50, p=0.23
Hospital 22 ± 9 (13) WMD -5.00, 95% CI	Hospital 27 ± 17 (11) -16.17, 6.17, p=0.38		
ICU 7 (4-14) Hospital 20 (10-35)	ICU 8 (5-16) Hospital 20 (10-34)	6 (3-12)	6 (3-12)
ICU 11.0 ± 9.5 Hospital 19.1 ± 14.4	ICU 4.0 ± 3.6 Hospital 13.4 ± 11.1	NR	NR
NR	NR	Longer in experimental group; specific num	eric data not reported
ICU 27.8 ± 17.82 (22) Hospital 40.0 ± 23.45 (22)	ICU 22.4 ± 17.35 (22) Hospital 30.3 ± 22.98 (22)	23.1 ± 12.66 (22)	20.9 ± 12.66 (22)
ICU 16.6 ± 14.8 Hospital 43.8 ± 36.6	ICU 13.4 ± 11.5 Hospital 31.3 ± 27.2	NR	NR
ICU 9.6 days	ICU 9.3 days	NR	NR
	3.4 ± 5.8 Hospital 44.9 \pm 30.2 ICU 13 \pm 6 (13) WMD -3.00, 95% CI Hospital 22 \pm 9 (13) WMD -5.00, 95% CI ICU 7 (4-14) Hospital 20 (10-35) ICU 11.0 \pm 9.5 Hospital 19.1 \pm 14.4 NR ICU 27.8 \pm 17.82 (22) Hospital 40.0 \pm 23.45 (22) ICU 16.6 \pm 14.8 Hospital 43.8 \pm 36.6 ICU	3.4 ± 5.8 7.8 ± 13.6 Hospital 44.9 ± 30.2 28.8 ± 25.7 ICU ICU ICU 13 ± 6 (13) 16 ± 10 (11) WMD -3.00, 95% CI -9.75, 3.75, p=0.38 Hospital Hospital 22 ± 9 (13) 27 ± 17 (11) WMD -5.00, 95% CI -16.17, 6.17, p=0.38 ICU ICU ICU ICU ICU ICU 7 (4-14) 8 (5-16) Hospital 20 (10-34) ICU ICU ICU ICU ICU 11.0 ± 9.5 4.0 ± 3.6 Hospital 13.4 ± 11.1 NR NR NR ICU ICU ICU ICU ICU ICU 12.7.8 ± 17.82 (22) 4.0 ± 3.6 Hospital 13.4 ± 11.5 Hospital 40.0 ± 23.45 (22) ICU ICU 16.6 ± 14.8 13.4 ± 11.5 Hospital 30.3 ± 22.98 (22) ICU ICU ICU ICU ICU 16.6 ± 14.8 31.3 ± 27.2 ICU ICU	3.4 ± 5.8 Hospital 7.8 ± 13.6 Hospital 10.5×10^{-10} 44.9 ± 30.2 28.8 ± 25.7 10.5×10^{-10} ICU $13 \pm 6 (13)$ WMD -3.00, 95% CI -9.75, 3.75, p=0.38 $10 \pm 5 (13)$ WMD -4.00, 95% CI Hospital $22 \pm 9 (13)$ $10 \pm 5 (13)$ WMD -4.00, 95% CI WMD -4.00, 95% CI WMD -4.00, 95% CI ICU 7 (4:14) Hospital 20 (10.35) ICU 8 (5:16) Hospital 20 (10.34) $6 (3-12)$ ICU 11.0 ± 9.5 Hospital $20 (10.35)$ 10.9 ± 3.6 Hospital 19.1 ± 14.4 NR NR NR Longer in experimental group: specific nume Hospital 10.1 ± 11.4 NR NR Longer in experimental group: specific nume Hospital $40.0 \pm 23.45 (22)$ CU $12.8 \pm 17.8 (22)$ Hospital $40.0 \pm 23.45 (22)$ ICU $12.4 \pm 17.35 (22)$ Hospital $30.3 \pm 22.98 (22)$ NR ICU 12.6 ± 14.8 Hospital 43.8 ± 36.6 I3.4 \pm 11.5 Hospital 31.3 ± 27.2 NR ICU 43.8 ± 36.6 ICU 31.3 ± 27.2 NR

*Mortality data was ITT, data on infections was non ITT

**Bertolini data not included in meta-analysis as control formula was Parenteral Nutrition, not an enteral formula.

*** Tsuei 2004: excluded in sensitivity analyses as only study that gave arginine alone.

***Kuhls 2007: data pertaining to ß hydroxyl methyl butyrate (HMB) supplement vs none not shown here, refer to section 6.5 Other EN Formulas for more details

C.Random: Concealed randomization NR: Not Reported ITT: intent to treat

‡ Hospital mortality reported or presumed unless specified

Impact: 12.5 g/L arginine, ω 3 fatty acids, ribonucleic acid and 55.8 gm protein/litre

Immun-Aid: 14 g/L arginine, glutamine, BCAA, @ 3 fatty acids, nucleic acids, Vit E, selenium, zinc and 80gms protein/litre

Perative: 6.8 g/L arginine, w 3 fatty acids, Vit E, beta Carotene, zinc and selenium and 66 gms protein/litre

Optimental: 5.5 g/L arginine, ω 3 fatty acids, VitC, E, beta-carotene and 51 gms protein/litre

Stresson: 9g/L arginine, 13 g/L glutamine, w 3 fatty acids, Vitamin E, C, beta-carotene, 75g protein/litre

Crucial: 10 g/L arginine, ω 3 fatty acids, VitC, E, 67 g protein/litre.

Neomune 48 g sachet: 2.5 g arginine, 1.25 g glutamine, fish oil, 12.5 g protein (Protein: 20% arginine, 10% glutamine; Fat: 20% fish oil) vs study's prepared formula: 12.5 g/L arginine, 6.25 g/L glutamine, fish oils, 62.5 g/L of protein

Figure 1a. Mortality (with quality sub-analyses)

	Diets with Ar	-	Contr			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
1.1.1 High Quality St	udies (8+)							
Gottschlich	2	17	1	14	0.3%	1.65 [0.17, 16.33] 1	1990	· · ·
Cerra	1	11	1	9	0.2%	0.82 [0.06, 11.33] 1	1991 🕂	•
Bower	24	153	12	143	3.7%	1.87 [0.97, 3.60] 1	1995	
Kudsk	1	17	1	18	0.2%	1.06 [0.07, 15.62] 1	1996 🕂	•
Saffle	5	25	3	24	0.9%	1.60 [0.43, 5.97] 1	1997	
Atkinson	95	197	85	193	33.6%	1.09 [0.88, 1.36] 1	1998	
Weimann	2	16	4	13	0.7%	0.41 [0.09, 1.88] 1	1998 🕂	
Capparos	27	130	30	105	7.7%	0.73 [0.46, 1.14] 2	2001	
Conejero	14	43	9	33	3.2%	1.19 [0.59, 2.41] 2	2002	
Dent	20	87	8	83	2.7%	2.39 [1.11, 5.11] 2	2003	
Kieft	114	302	106	295	35.1%	1.05 [0.85, 1.30] 2	2005	
Tsuei	1	13	0	11	0.2%	2.57 [0.12, 57.44] 2	2005 -	
Pearce	0	15	3	16	0.2%	0.15 [0.01, 2.71] 2	2006 🔶	• • • • • • • • • • • • • • • • • • • •
Wibbenmeyer	2	12	0	11	0.2%	4.62 [0.25, 86.72] 2	2006	
Kuhls	3	22	2	22	0.6%	1.50 [0.28, 8.12] 2	2007	
Beale	7	27	7	28	1.9%	1.04 [0.42, 2.56] 2	2008	
Khorana	0	20	0	20		Not estimable 2	2009	
Subtotal (95% CI)		1107		1038	91.5%	1.09 [0.95, 1.25]		◆
Total events	318		272					
Heterogeneity: Tau ² = Test for overall effect:	Z = 1.26 (P = 0.	,	5 (P = 0.4	43); I² =	: 2%			
1.1.2 Low Quality Stu	. ,							
Moore	1		-					
		51	2	47	0.3%		1994 🕇	
	0	19	0	18		Not estimable	1995	
Engel	0 7	19 18	0 5	18 18	1.8%	Not estimable 1 1.40 [0.54, 3.60] 1	1995 1997	
Engel Mendez	0 7 1	19 18 22	0 5 1	18 18 21	1.8% 0.2%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1	1995 1997 1997 ←	
Engel Mendez Rodrigo	0 7 1 2	19 18 22 16	0 5 1 1	18 18 21 14	1.8% 0.2% 0.3%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1	1995 1997 1997 ← 1997	
Brown Engel Mendez Rodrigo Galban	0 7 1 2 17	19 18 22 16 89	0 5 1 1 28	18 18 21 14 87	1.8% 0.2% 0.3% 5.7%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2	1995 1997 1997 ← 1997 2000	
Engel Mendez Rodrigo Galban Chuntrasakul	0 7 1 2	19 18 22 16	0 5 1 1	18 18 21 14	1.8% 0.2% 0.3%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2	1995 1997 1997 ← 1997	
Engel Mendez Rodrigo Galban Chuntrasakul Subtotal (95% CI)	0 7 1 2 17	19 18 22 16 89 18	0 5 1 1 28	18 18 21 14 87 18	1.8% 0.2% 0.3% 5.7% 0.2%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2 1.00 [0.07, 14.79] 2	1995 1997 1997 ← 1997 2000	
Engel Mendez Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² =	0 7 1 2 17 1 29 0.00; Chi ² = 3.2	19 18 22 16 89 18 233	0 5 1 28 1 38	18 18 21 14 87 18 223	1.8% 0.2% 0.3% 5.7% 0.2% 8.5%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2 1.00 [0.07, 14.79] 2	1995 1997 1997 ← 1997 2000	
Engel Mendez Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	0 7 1 2 17 1 29 0.00; Chi ² = 3.2	19 18 22 16 89 18 233	0 5 1 28 1 38	18 18 21 14 87 18 223); ² = 0'	1.8% 0.2% 0.3% 5.7% 0.2% 8.5%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2 1.00 [0.07, 14.79] 2 0.75 [0.49, 1.15]	1995 1997 1997 ← 1997 2000	
Engel Mendez Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	0 7 1 2 17 1 29 0.00; Chi ² = 3.2 Z = 1.31 (P = 0.	19 18 22 16 89 18 233 1, df = 5 (19)	0 5 1 28 1 38 (P = 0.67)	18 18 21 14 87 18 223); ² = 0'	1.8% 0.2% 0.3% 5.7% 0.2% 8.5%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2 1.00 [0.07, 14.79] 2	1995 1997 1997 ← 1997 2000	
Engel Mendez Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	0 7 1 2 17 1 29 0.00; Chi ² = 3.2 Z = 1.31 (P = 0. 347	19 18 22 16 89 18 233 1, df = 5 (19) 1340	0 5 1 28 1 38 (P = 0.67) 310	18 18 21 14 87 18 223); ² = 0' 1261	1.8% 0.2% 0.3% 5.7% 0.2% 8.5%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2 1.00 [0.07, 14.79] 2 0.75 [0.49, 1.15]	1995 1997 ← 1997 ← 2000 ←	
Engel Mendez Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	0 7 1 2 17 1 29 0.00; Chi ² = 3.2 Z = 1.31 (P = 0. 347 0.00; Chi ² = 21.	19 18 22 16 89 18 233 1, df = 5 (.19) 1340 .05, df = 2	0 5 1 28 1 38 (P = 0.67) 310	18 18 21 14 87 18 223); ² = 0' 1261	1.8% 0.2% 0.3% 5.7% 0.2% 8.5%	Not estimable 1 1.40 [0.54, 3.60] 1 0.95 [0.06, 14.30] 1 1.75 [0.18, 17.29] 1 0.59 [0.35, 1.00] 2 1.00 [0.07, 14.79] 2 0.75 [0.49, 1.15]	1995 1997 1997 ← 1997 2000	0.2 0.5 1 2 5 1 Favours Arginine Favours Control

Study or Subgroup	Diets with Ar Events		Contr		Weight	Risk Ratio M-H, Random, 95% Cl	Year	Risk Ratio M-H, Random, 95% Cl	
1.6.1 High Quality Stu		Total	LVCIILS	Total	reight	m-n, Random, 33 /6 Of	. 041		
Gottschlich	2	17	1	14	0.4%	1.65 [0.17, 16.33]	1990		→
Cerra	1	11	. 1	9	0.3%	0.82 [0.06, 11.33]		• •	+
Bower	24	153	12	143	4.3%	1.87 [0.97, 3.60]			
Kudsk	1	17	1	18	0.3%	1.06 [0.07, 15.62]		•	+
Saffle	5	25	3	24	1.1%	1.60 [0.43, 5.97]			
Atkinson	95	197	85	193	31.3%	1.09 [0.88, 1.36]		_ _	
Weimann	2	16	4	13	0.8%	0.41 [0.09, 1.88]		· · · · · · · · · · · · · · · · · · ·	
Capparos	27	130	30	105	8.8%		2001		
Conejero	14	43	9	33	3.8%	1.19 [0.59, 2.41]			
Dent	20	87	8	83	3.2%		2002		
Kieft	114	302	106	295	32.4%	1.05 [0.85, 1.30]			
Pearce	0	15	3	295	0.2%	0.15 [0.01, 2.71]		←	
Wibbenmeyer	2	12	0	11	0.2%	4.62 [0.25, 86.72]			→
Kuhls	3	22	2	22	0.2%	1.50 [0.28, 8.12]			
Beale	7	27	7	28	2.3%	1.04 [0.42, 2.56]			
Khorana	ó	20	ó	20	2.570	Not estimable			
Subtotal (95% CI)	0	1094	0	1027	90.0%	1.10 [0.94, 1.28]	2009	▲	
Total events	317	1004	272	IOLI	00.070	1110 [0104, 1120]		•	
Heterogeneity: Tau ² =		03 df = 1		381.12 -	6%				
,			4 (F = 0.	50), 1	- 0 %				
lest for overall effect:	Z = 1.17 (P = 0)	24)							
Test for overall effect:	Z = 1.17 (P = 0.	24)							
Test for overall effect:		24)							
		24) 51	2	47	0.3%	0.46 [0.04, 4.92]	1994	·	
1.6.2 Low Quality Stu	idies (<8)	,	2	47 18	0.3%	0.46 [0.04, 4.92] Not estimable		·	
1.6.2 Low Quality Stu Moore	idies (<8) 1	51			0.3% 0.3%		1995		→
1.6.2 Low Quality Stu Moore Brown	idies (<8) 1 0	51 19	0	18		Not estimable	1995 1997		→
1.6.2 Low Quality Stu Moore Brown Mendez	idies (<8) 1 0 1	51 19 22	0 1	18 21	0.3%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60]	1995 1997 1997		→ →
1.6.2 Low Quality Stu Moore Brown Mendez Engel	ndies (<8) 1 0 1 7	51 19 22 18	0 1 5	18 21 18	0.3% 2.1%	Not estimable 0.95 [0.06, 14.30]	1995 1997 1997 1997		→ →
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo	ndies (<8) 1 0 1 7 2	51 19 22 18 16	0 1 5 1	18 21 18 14	0.3% 2.1% 0.4%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00]	1995 1997 1997 1997		→ →
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban	idies (<8) 1 0 1 7 2 17	51 19 22 18 16 89	0 1 5 1 28	18 21 18 14 87	0.3% 2.1% 0.4% 6.6%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00]	1995 1997 1997 1997 2000		→ → →
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban Chuntrasakul	idies (<8) 1 0 1 7 2 17	51 19 22 18 16 89 18	0 1 5 1 28	18 21 18 14 87 18	0.3% 2.1% 0.4% 6.6% 0.3%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00] 1.00 [0.07, 14.79]	1995 1997 1997 1997 2000		\rightarrow \rightarrow \rightarrow
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events	ndies (<8) 1 0 1 7 2 17 1 29	51 19 22 18 16 89 18 233	0 1 5 1 28 1 38	18 21 18 14 87 18 223	0.3% 2.1% 0.4% 6.6% 0.3% 10.0%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00] 1.00 [0.07, 14.79]	1995 1997 1997 1997 2000		→ → →
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban Chuntrasakul Subtotal (95% CI)	idies (<8) 1 0 1 7 2 17 1 29 0.00; Chi ² = 3.2	51 19 22 18 16 89 18 233 1, df = 5	0 1 5 1 28 1 38	18 21 18 14 87 18 223	0.3% 2.1% 0.4% 6.6% 0.3% 10.0%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00] 1.00 [0.07, 14.79]	1995 1997 1997 1997 2000		→ → →
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	idies (<8) 1 0 1 7 2 17 1 29 0.00; Chi ² = 3.2	51 19 22 18 16 89 18 233 1, df = 5	0 1 5 1 28 1 38	18 21 18 14 87 18 223); ² = 0	0.3% 2.1% 0.4% 6.6% 0.3% 10.0%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00] 1.00 [0.07, 14.79] 0.75 [0.49, 1.15]	1995 1997 1997 1997 2000		\rightarrow \rightarrow \rightarrow
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	idies (<8) 1 0 1 7 2 17 1 29 0.00; Chi ² = 3.2 Z = 1.31 (P = 0.	51 19 22 18 16 89 18 233 1, df = 5 19)	0 1 5 1 28 1 38 (P = 0.67)	18 21 18 14 87 18 223); ² = 0	0.3% 2.1% 0.4% 6.6% 0.3% 10.0%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00] 1.00 [0.07, 14.79]	1995 1997 1997 1997 2000		\rightarrow \rightarrow \rightarrow
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events	idies (<8) 1 0 1 7 2 17 1 29 0.00; Chi ² = 3.2 Z = 1.31 (P = 0. 346	51 19 22 18 16 89 18 233 1, df = 5 19) 1327	0 1 5 1 28 1 38 P = 0.67 310	18 21 18 14 87 18 223); ² = 0 1250	0.3% 2.1% 0.4% 6.6% 0.3% 10.0%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00] 1.00 [0.07, 14.79] 0.75 [0.49, 1.15]	1995 1997 1997 1997 2000		+ + +
1.6.2 Low Quality Stu Moore Brown Mendez Engel Rodrigo Galban Chuntrasakul Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect:	dies (<8) 1 0 1 7 2 17 1 29 0.00; Chi ² = 3.2 Z = 1.31 (P = 0. 346 0.00; Chi ² = 20.	51 19 22 18 16 89 18 233 1, df = 5 19) 1327 73, df = 2	0 1 5 1 28 1 38 P = 0.67 310	18 21 18 14 87 18 223); ² = 0 1250	0.3% 2.1% 0.4% 6.6% 0.3% 10.0%	Not estimable 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 1.75 [0.18, 17.29] 0.59 [0.35, 1.00] 1.00 [0.07, 14.79] 0.75 [0.49, 1.15]	1995 1997 1997 1997 2000		$\uparrow \rightarrow \rightarrow \top$

1.7.1 Trauma patients Moore Brown Kudsk Mendez Engel Weimann Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	Events 1 0 1 1 7 2 1 1 3 0 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Total 51 19 17 22 18 16 18 13 22 20 216	2 0 1 5 4 1 0 2 0	47 18 18 21 18 13 18 13 18 11 22	Weight 0.3% 0.2% 0.2% 1.8% 0.7% 0.2% 0.2%	M-H, Random, 95% Cl 0.46 [0.04, 4.92] Not estimable 1.06 [0.07, 15.62] 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 0.41 [0.09, 1.88] 1.00 [0.07, 14.79] 2.57 [0.12, 57.44]	1994 1995 1996 1997 1997 1998	M-H, Random, 95% Cl
Moore Brown Kudsk Mendez Engel Weimann Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	0 1 7 2 1 3 0	19 17 22 18 16 18 13 22 20	0 1 5 4 1 0 2	18 18 21 18 13 18 11	0.2% 0.2% 1.8% 0.7% 0.2%	Not estimable 1.06 [0.07, 15.62] 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 0.41 [0.09, 1.88] 1.00 [0.07, 14.79]	1995 1996 1997 1997 1998	
Brown Kudsk Mendez Engel Weimann Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	0 1 7 2 1 3 0	19 17 22 18 16 18 13 22 20	0 1 5 4 1 0 2	18 18 21 18 13 18 11	0.2% 0.2% 1.8% 0.7% 0.2%	Not estimable 1.06 [0.07, 15.62] 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 0.41 [0.09, 1.88] 1.00 [0.07, 14.79]	1995 1996 1997 1997 1998	
Kudsk Mendez Engel Weimann Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	1 7 2 1 1 3 0	17 22 18 16 18 13 22 20	1 5 4 1 0 2	18 21 18 13 18 11	0.2% 1.8% 0.7% 0.2%	1.06 [0.07, 15.62] 0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 0.41 [0.09, 1.88] 1.00 [0.07, 14.79]	1996 1997 1997 1998	
Mendez Engel Weimann Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	1 7 2 1 1 3 0	22 18 16 18 13 22 20	1 5 4 1 0 2	21 18 13 18 11	0.2% 1.8% 0.7% 0.2%	0.95 [0.06, 14.30] 1.40 [0.54, 3.60] 0.41 [0.09, 1.88] 1.00 [0.07, 14.79]	1997 1997 1998	
Engel Weimann Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	7 2 1 1 3 0	18 16 18 13 22 20	5 4 1 0 2	18 13 18 11	1.8% 0.7% 0.2%	1.40 [0.54, 3.60] 0.41 [0.09, 1.88] 1.00 [0.07, 14.79]	1997 1998	
Weimann Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	2 1 1 3 0	16 18 13 22 20	4 1 0 2	13 18 11	0.7% 0.2%	0.41 [0.09, 1.88] 1.00 [0.07, 14.79]	1998	·
Chuntrasakul Tsuei Kuhls Khorana Subtotal (95% CI)	1 1 3 0	18 13 22 20	1 0 2	18 11	0.2%	1.00 [0.07, 14.79]		
Tsuei Kuhls Khorana Subtotal (95% Cl)	1 3 0	13 22 20	0	11			2003	
Kuhls Khorana Subtotal (95% Cl)	3 0	22 20	2		0.2%	2 57 [0 12 57 44]		•
Khorana Subtotal (95% CI)	0	20		22				
Subtotal (95% CI)	-		0		0.6%	1.50 [0.28, 8.12]	2007	•
. ,	17	216		20		Not estimable	2009	
Total succession	17			206	4.1%	1.04 [0.56, 1.93]		
Total events			16					
Heterogeneity: Tau ² = 0.00;); Chi ² = 2.8	0, df = 7 ((P = 0.90)); ² = 0'	%			
Test for overall effect: Z = 0	0.12 (P = 0.	91)						
1.7.2 Non-trauma patients		. –						
Gottschlich	2	17	1	14	0.3%	1.65 [0.17, 16.33]		
Cerra	1	11	1	9	0.2%	0.82 [0.06, 11.33]	1991	• •
Bower	24	153	12	143	3.7%	1.87 [0.97, 3.60]		
Saffle	5	25	3	24	0.9%	1.60 [0.43, 5.97]	1997	
Rodrigo	2	16	1	14	0.3%	1.75 [0.18, 17.29]		
Atkinson	95	197	85	193	33.6%	1.09 [0.88, 1.36]		
Galban	17	89	28	87	5.7%	0.59 [0.35, 1.00]	2000	
Capparos	27	130	30	105	7.7%	0.73 [0.46, 1.14]	2001	
Conejero	14	43	9	33	3.2%	1.19 [0.59, 2.41]	2002	
Dent	20	87	8	83	2.7%	2.39 [1.11, 5.11]	2003	
Kieft	114	302	106	295	35.1%	1.05 [0.85, 1.30]	2005	
Wibbenmeyer	2	12	0	11	0.2%	4.62 [0.25, 86.72]	2006	
Pearce	0	15	3	16	0.2%	0.15 [0.01, 2.71]	2006	<
Beale	7	27	7	28	1.9%	1.04 [0.42, 2.56]	2008	
Subtotal (95% CI)		1124		1055	95.9%	1.07 [0.87, 1.30]		+
Total events	330		294					
Heterogeneity: Tau ² = 0.03;	3; Chi² = 18.	26, df = 1	3 (P = 0.1	15); l² =	: 29%			
Test for overall effect: Z = 0	0.64 (P = 0.	52)						
Total (95% CI)		1340		1261	100.0%	1.06 [0.93, 1.20]		•
Total events	347		310					Ť
Heterogeneity: Tau ² = 0.00;		05 df = 2		46) 12 -	0%			0.1 0.2 0.5 1 2 5

Figure 2a. Mortality (with trauma/non-trauma sub-analyses)

Test for subgroup differences: Chi² = 0.01, df = 1 (P = 0.93), I² = 0%

	Diets with Ar	-	standa			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
1.8.1 Trauma patients								
Moore	1	51	2	47	0.3%	0.46 [0.04, 4.92]	1994	· · · ·
Brown	0	19	0	18		Not estimable	1995	
Kudsk	1	17	1	18	0.3%	1.06 [0.07, 15.62]	1996	• •
Engel	7	18	5	18	2.1%	1.40 [0.54, 3.60]	1997	
Mendez	1	22	1	21	0.3%	0.95 [0.06, 14.30]	1997	· · · · ·
Weimann	2	16	4	13	0.8%	0.41 [0.09, 1.88]	1998	· · ·
Chuntrasakul	1	18	1	18	0.3%	1.00 [0.07, 14.79]	2003	• •
Kuhls	3	22	2	22	0.7%	1.50 [0.28, 8.12]	2007	
Khorana	0	20	0	20		Not estimable	2009	
Subtotal (95% CI)		203		195	4.7%	1.00 [0.53, 1.88]		-
Fotal events	16		16					
Heterogeneity: Tau ² = 0	.00; Chi ² = 2.4	7, df = 6 (P = 0.87); ² = 0	%			
Test for overall effect: Z	= 0.00 (P = 1	.00)						
1.8.2 Non-trauma patie	onts							
Gottschlich	2	17	1	14	0.4%	1.65 [0.17, 16.33]	1990	
Cerra	1	11	1	9	0.3%	0.82 [0.06, 11.33]	1991	· · ·
Bower	24	153	12	143	4.3%	1.87 [0.97, 3.60]	1995	
Rodrigo	2	16	1	14	0.4%	1.75 [0.18, 17.29]	1997	
Saffle	5	25	3	24	1.1%	1.60 [0.43, 5.97]	1997	
Atkinson	95	197	85	193	31.3%	1.09 [0.88, 1.36]	1998	
Galban	17	89	28	87	6.6%	0.59 [0.35, 1.00]	2000	
Capparos	27	130	30	105	8.8%	0.73 [0.46, 1.14]	2001	
Conejero	14	43	9	33	3.8%	1.19 [0.59, 2.41]	2002	-
Dent	20	87	8	83	3.2%	2.39 [1.11, 5.11]	2003	
Kieft	114	302	106	295	32.4%	1.05 [0.85, 1.30]	2005	
Pearce	0	15	3	16	0.2%	0.15 [0.01, 2.71]	2006	←
Vibbenmeyer	2	12	0	11	0.2%	4.62 [0.25, 86.72]	2006	
Beale	7	27	7	28	2.3%	1.04 [0.42, 2.56]	2008	
Subtotal (95% CI)		1124		1055	95.3%	1.07 [0.87, 1.30]		•
Total events	330		294					
Heterogeneity: Tau ² = 0	.03; Chi ² = 18	.26, df = 1	3 (P = 0.	15); l² =	29%			
Test for overall effect: Z			-					
Total (95% CI)		1327		1250	100.0%	1.05 [0.92, 1.21]		•
Fotal events	346	1021	310	1200	.00.070	1.00 [0.02, 1.21]		T
Heterogeneity: Tau ² = 0		72 df - 0		443-12-	. 40/			
· ·			0 (P = 0.4	4 (); 14 =	470			0.1 0.2 0.5 1 2 5
Test for overall effect: Z	-0.73 (P = 0.	.40)						Favours Arginine Favours standard

Figure 2b. Mortality in trauma patients (with trauma/non-trauma sub-analyses; excluding Tsuei)

Figure 3a. Infectious complications (with quality sub-analyses)

	Diets wih Arg		standa			Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
1.2.1 High Quality Stu	idies (8+)							
Bower	86	153	90	143	15.1%	0.89 [0.74, 1.08]	1995	
Kudsk	5	16	11	17	3.1%	0.48 [0.22, 1.08]	1996	
Capparos	64	130	37	105	10.8%	1.40 [1.02, 1.91]	2001	
Conejero	11	43	17	33	4.9%	0.50 [0.27, 0.91]	2002	
Dent	57	87	52	83	13.7%	1.05 [0.83, 1.31]	2003	· •
Kieft 2005	130	302	123	295	15.1%	1.03 [0.86, 1.24]	2005	+
Tsuei	8	13	6	11	4.0%	1.13 [0.57, 2.25]	2005	
Wibbenmeyer	9	12	7	11	5.6%	1.18 [0.68, 2.05]	2006	
Subtotal (95% CI)		756		698	72.3%	0.99 [0.83, 1.17]		•
Total events	370		343					
Heterogeneity: Tau ² =	0.03; Chi ² = 14.	72, df = 1	7 (P = 0.0)4); l² =	52%			
Test for overall effect:	Z = 0.16 (P = 0.	87)						
1.2.2 Low Quality Stu	dies (<8)							
Moore	9	51	10	47	3.1%	0.83 [0.37, 1.86]	1994	
Brown	3	19	10	18	1.8%	0.28 [0.09, 0.87]	1995	·
Engel	6	18	5	18	2.2%	1.20 [0.45, 3.23]	1997	_
Rodrigo	5	16	3	14	1.5%	1.46 [0.42, 5.03]	1997	
Mendez	19	22	12	21	8.3%	1.51 [1.01, 2.27]	1997	
Galban	39	89	44	87	10.8%	0.87 [0.63, 1.19]	2000	
Subtotal (95% CI)		215		205	27.7%	0.97 [0.65, 1.45]		•
Total events	81		84					
Heterogeneity: Tau ² =	0.12; Chi ² = 10.	91, df =	5 (P = 0.0)5); l² =	54%			
Test for overall effect:	Z = 0.14 (P = 0.	89)						
Total (95% CI)		971		903	100.0%	0.99 [0.85, 1.15]		
Total events	451		427					
Heterogeneity: Tau ² =	0.03; Chi ² = 25.	16, df =	13 (P = 0	.02); l²	= 48%			
Test for overall effect:		-						0.1 0.2 0.5 1 2 5 10 Favours Arginine Favours standard
Test for subgroup diffe		-	4 (0 0	0.00				Favours Arginine Favours standard

Figure 3b. Infectious	complications	(with quality sub-analyses; excluding Tsuei)	

	•	•	,			o ,		
	Diets wih Arg	inine	standa	rd		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% CI
1.9.1 High Quality Stu	dies (8+)							
Bower	86	153	90	143	15.4%	0.89 [0.74, 1.08]	1995	
Kudsk	5	16	11	17	3.4%	0.48 [0.22, 1.08]	1996	
Capparos	64	130	37	105	11.3%	1.40 [1.02, 1.91]	2001	
Conejero	11	43	17	33	5.2%	0.50 [0.27, 0.91]	2002	
Dent	57	87	52	83	14.1%	1.05 [0.83, 1.31]	2003	+
Kieft 2005	130	302	123	295	15.4%	1.03 [0.86, 1.24]	2005	+
Wibbenmeyer	9	12	7	11	6.0%	1.18 [0.68, 2.05]	2006	_ _
Subtotal (95% CI)		743		687	70.7%	0.98 [0.81, 1.17]		•
Total events	362		337					
Heterogeneity: Tau ² = (0.03; Chi ² = 14.	60, df = (6 (P = 0.0	2); I² =	59%			
Test for overall effect: 2	Z = 0.26 (P = 0.	80)						
1.9.2 Low Quality Stud	dies (<8)							
Moore	9	51	10	47	3.4%	0.83 [0.37, 1.86]	1994	
Brown	3	19	10	18	1.9%	0.28 [0.09, 0.87]	1995	<
Engel	6	18	5	18	2.4%	1.20 [0.45, 3.23]	1997	
Rodrigo	5	16	3	14	1.6%	1.46 [0.42, 5.03]	1997	
Mendez	19	22	12	21	8.8%	1.51 [1.01, 2.27]	1997	⊢ •−
Galban	39	89	44	87	11.3%	0.87 [0.63, 1.19]	2000	
Subtotal (95% CI)		215		205	29.3%	0.97 [0.65, 1.45]		•
Total events	81		84					
Heterogeneity: Tau ² = (0.12; Chi ² = 10.	91, df =	5 (P = 0.0	15); I² =	54%			
Test for overall effect: 2	Z = 0.14 (P = 0.	89)						
				000	400.00/	0.00 00.02 1.101		
Total (95% CI)		958		89Z	100.0%	0.98 [0.83, 1.15]		•
	443	958	421	89Z	100.0%	0.98 [0.83, 1.15]		Ť
Total (95% CI) Total events						0.98 [0.83, 1.15]		
Total (95% CI)	0.04; Chi ² = 25.	04, df =				0.98 [0.83, 1.15]		0.1 0.2 0.5 1 2 5 10 Favours Arginine Favours standard

	•	•				, ,		
	Diets wih Arg	jinine	standa	rd		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
1.10.1 Trauma Patier	nts							
Moore	9	51	10	47	3.1%	0.83 [0.37, 1.86]	1994	
Brown	3	19	10	18	1.8%	0.28 [0.09, 0.87]		
Kudsk	5	16	11	17	3.1%	0.48 [0.22, 1.08]	1996	
Mendez	19	22	12	21	8.3%	1.51 [1.01, 2.27]	1997	⊢ •−
Engel	6	18	5	18	2.2%	1.20 [0.45, 3.23]		
Tsuei	8	13	6	11	4.0%	1.13 [0.57, 2.25]	2005	
Subtotal (95% CI)		139		132	22.5%	0.86 [0.52, 1.42]		
Total events	50		54					
Heterogeneity: Tau ² =	0.24; Chi ² = 13	.74, df =	5 (P = 0.0	2); I ² =	64%			
Test for overall effect:		-	-					
1.10.2 Non-trauma P	atients							
Bower	86	153	90	143	15.1%	0.89 [0.74, 1.08]	1995	
Rodrigo	5	16	3	14	1.5%	1.46 [0.42, 5.03]	1997	
Galban	39	89	44	87	10.8%	0.87 [0.63, 1.19]	2000	
Capparos	64	130	37	105	10.8%	1.40 [1.02, 1.91]	2001	⊢ ∎−
Conejero	11	43	17	33	4.9%	0.50 [0.27, 0.91]	2002	
Dent	57	87	52	83	13.7%	1.05 [0.83, 1.31]	2003	+
Kieft 2005	130	302	123	295	15.1%	1.03 [0.86, 1.24]	2005	+
Wibbenmeyer	9	12	7	11	5.6%	1.18 [0.68, 2.05]	2006	_
Subtotal (95% CI)		832		771	77.5%	1.00 [0.86, 1.16]		+
Total events	401		373					
Heterogeneity: Tau ² =	0.02; Chi ² = 12	.64, df = 1	7 (P = 0.0	(8); I² =	45%			
Test for overall effect:	Z = 0.05 (P = 0	.96)						
Total (95% CI)		971		903	100.0%	0.99 [0.85, 1.15]		•
Total events	451		427					
Heterogeneity: Tau ² =	0.03; Chi ² = 25	16, df =	13 (P = 0	.02); l²	= 48%			0.1 0.2 0.5 1 2 5 1
Test for overall effect:	Z = 0.15 (P = 0	.88)						Favours Arginine Favours standa
Test for subgroup diffe	erences: Chi ² =	0.31, df =	1 (P = 0.	58), l²	= 0%			ravous Aginine Tavous stanua
-								

Figure 4a. Infectious complications (with trauma/non-trauma sub-analyses)

-	•	•						,
	Diets wih Arg	inine	standa	ard		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
1.11.1 Trauma Patie	nts							
Moore	9	51	10	47	3.4%	0.83 [0.37, 1.86]	1994	
Brown	3	19	10	18	1.9%	0.28 [0.09, 0.87]	1995	<
Kudsk	5	16	11	17	3.4%	0.48 [0.22, 1.08]	1996	
Mendez	19	22	12	21	8.8%	1.51 [1.01, 2.27]	1997	⊢ •−
Engel	6	18	5	18	2.4%	1.20 [0.45, 3.23]	1997	
Subtotal (95% CI)		126		121	19.8%	0.79 [0.41, 1.50]		
Total events	42		48					
Heterogeneity: Tau ² =	= 0.36; Chi ² = 13.	79, df = 4	4 (P = 0.0	08); l²	= 71%			
Test for overall effect:	Z = 0.73 (P = 0.	46)						
1.11.2 Non-trauma P	atients							
Bower	86	153	90	143	15.4%	0.89 [0.74, 1.08]	1995	
Rodrigo	5	16	3	14	1.6%	1.46 [0.42, 5.03]	1997	
Galban	39	89	44	87	11.3%	0.87 [0.63, 1.19]	2000	
Capparos	64	130	37	105	11.3%	1.40 [1.02, 1.91]	2001	⊢ ∎−
Conejero	11	43	17	- 33	5.2%	0.50 [0.27, 0.91]	2002	
Dent	57	87	52	83	14.1%	1.05 [0.83, 1.31]	2003	+
Kieft 2005	130	302	123	295	15.4%	1.03 [0.86, 1.24]	2005	+
Wibbenmeyer	9	12	7	11	6.0%	1.18 [0.68, 2.05]	2006	_
Subtotal (95% CI)		832		771	80.2%	1.00 [0.86, 1.16]		•
Total events	401		373					
Heterogeneity: Tau ² =	= 0.02; Chi ² = 12.	64, df = 1	7 (P = 0.0)8); I² =	45%			
Test for overall effect:	Z = 0.05 (P = 0.	96)						
Total (95% CI)		958		892	100.0%	0.98 [0.83, 1.15]		
Total events	443	000	421			0.00 [0.00, 1110]		T
Heterogeneity: Tau ² =		04 df -		01): 12	- 52%			
Test for overall effect:			12(1 - 0	.01), 1	- 52 /0			0.1 0.2 0.5 1 2 5 1
Test for subgroup diff			1 (P - 0	48) I ²	- 0%			Favours Arginine Favours standar
rescior subgroup and	erences. Uni" = t	7.49, ul -	- I (F - U	40), 1	- 070			

Figure 4b. Infectious complications (with trauma/non-trauma sub-analyses; excluding Tsuei)

Figure 5a. Hospital LOS

	Diets w	vith Argiı	nine	0	Control			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Cerra	36.7	8.5	11	54.7	10.5	9	6.8%	-18.00 [-26.50, -9.50]	1991	←
Moore	14.6	1.3	51	17.2	2.8	47	12.0%	-2.60 [-3.48, -1.72]	1994	+
Bower	27.6	23	153	30.9	26	143	9.0%	-3.30 [-8.91, 2.31]	1995	
Kudsk	18.3	2.8	16	32.6	7	17	10.6%	-14.30 [-17.90, -10.70]	1996	←
Saffle	37	4	25	38	4	24	11.5%	-1.00 [-3.24, 1.24]	1997	
Mendez	34	21.2	22	21.9	11	21	5.8%	12.10 [2.07, 22.13]	1997	→
Weimann	70.2	53	16	58.1	30	13	1.1%	12.10 [-18.57, 42.77]	1998	← _ →
Atkinson	20.6	26	197	23.2	32	193	8.9%	-2.60 [-8.39, 3.19]	1998	
Chuntrasakul	45	30	18	29	26	18	2.6%	16.00 [-2.34, 34.34]	2003	
Dent	25	26	87	21	17	83	8.2%	4.00 [-2.57, 10.57]	2003	
Tsuei	22	9	61	27	17	55	9.5%	-5.00 [-10.03, 0.03]	2005	
Pearce	19.1	14.4	15	13.4	11.1	16	6.4%	5.70 [-3.39, 14.79]	2006	
Kuhls	40	23.45	22	30.3	22.98	22	4.0%	9.70 [-4.02, 23.42]	2007	
Beale	43.8	28	27	31.3	27.2	28	3.7%	12.50 [-2.10, 27.10]	2008	+
Total (95% CI)			721			689	100.0%	-1.38 [-4.73, 1.97]		-
Heterogeneity: Tau ² = 3	24.16: Ch	i² = 83.24	4. df = 1	3 (P < 0	.00001)	: I ² = 84	4%			
Test for overall effect:	-		-		,					-10 -5 0 5 10 Favours Arginine Favours Control

	Diets v	vith Argir	nine	C	Control			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Cerra	36.7	8.5	11	54.7	10.5	9	7.6%	-18.00 [-26.50, -9.50]	1991	←
Moore	14.6	1.3	51	17.2	2.8	47	12.9%	-2.60 [-3.48, -1.72]	1994	-
Bower	27.6	23	153	30.9	26	143	9.9%	-3.30 [-8.91, 2.31]	1995	
Kudsk	18.3	2.8	16	32.6	7	17	11.5%	-14.30 [-17.90, -10.70]	1996	←
Mendez	34	21.2	22	21.9	11	21	6.5%	12.10 [2.07, 22.13]	1997	—— - →
Saffle	37	4	25	38	4	24	12.4%	-1.00 [-3.24, 1.24]	1997	
Atkinson	20.6	26	197	23.2	32	193	9.8%	-2.60 [-8.39, 3.19]	1998	
Weimann	70.2	53	16	58.1	30	13	1.3%	12.10 [-18.57, 42.77]	1998	← →
Dent	25	26	87	21	17	83	9.1%	4.00 [-2.57, 10.57]	2003	
Chuntrasakul	45	30	18	29	26	18	3.0%	16.00 [-2.34, 34.34]	2003	
Pearce	19.1	14.4	15	13.4	11.1	16	7.2%	5.70 [-3.39, 14.79]	2006	
Kuhls	40	23.45	22	30.3	22.98	22	4.6%	9.70 [-4.02, 23.42]	2007	
Beale	43.8	28	27	31.3	27.2	28	4.2%	12.50 [-2.10, 27.10]	2008	
Total (95% CI)			660			634	100.0%	-0.89 [-4.53, 2.74]		-
Heterogeneity: Tau ² =	26.39: Ch	i² = 82.47	. df = 12	2 (P < 0	.00001)	: l² = 8	5%	- / •		
Test for overall effect:	-		-			,				-10 -5 0 5 10 Favours Arginine Favours Control

Revised Figure 5b. Hospital LOS (excluding Tsuei)

Figure 6a. ICU LOS

	Diets w	vith Argir	nine	0	Control			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Moore	5.3	0.8	51	8.6	3.1	47	14.6%	-3.30 [-4.21, -2.39]	1994	
Kudsk	5.8	1.8	16	9.5	2.3	17	13.8%	-3.70 [-5.10, -2.30]	1996	
Rodrigo	8	7.3	16	10	2.7	14	8.5%	-2.00 [-5.85, 1.85]	1997	
Mendez	18.9	20.7	22	11.1	6.7	21	2.8%	7.80 [-1.31, 16.91]	1997	+
Engel	19	7.4	18	20.5	5.3	18	7.9%	-1.50 [-5.70, 2.70]	1997	
Atkinson	10.5	13.1	197	12.2	23.2	193	8.7%	-1.70 [-5.45, 2.05]	1998	
Weimann	31.4	23.1	16	47.4	32.8	13	0.6%	-16.00 [-37.12, 5.12]	1998	←
Galban	18.2	12.6	89	16.6	12.9	89	8.7%	1.60 [-2.15, 5.35]	2000	- +
Dent	14.8	19.6	87	12	10.9	83	6.9%	2.80 [-1.94, 7.54]	2003	+
Chuntrasakul	3.4	5.8	18	7.8	13.6	18	4.4%	-4.40 [-11.23, 2.43]	2003	
Tsuei	13	6	61	16	10	55	10.2%	-3.00 [-6.04, 0.04]	2005	
Pearce	11	9.5	15	4	3.6	16	6.4%	7.00 [1.88, 12.12]	2006	— • — •
Kuhls	27.8	17.82	22	22.4	17.35	22	2.3%	5.40 [-4.99, 15.79]	2007	,
Beale	16.6	14.8	27	13.4	11.5	28	4.2%	3.20 [-3.82, 10.22]	2008	
Total (95% CI)			655			634	100.0%	-0.77 [-2.46, 0.92]		•
Heterogeneity: Tau ² =	4.89: Chi ²	= 40.26.	df = 13	(P = 0.0)	0001): P	² = 68%	,			
Test for overall effect:										-10 -5 0 5 10 Favours Arginine Favours Control

	Diets w	vith Argir	nine	C	Control			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Moore	5.3	0.8	51	8.6	3.1	47	15.5%	-3.30 [-4.21, -2.39]	1994	-
Kudsk	5.8	1.8	16	9.5	2.3	17	14.8%	-3.70 [-5.10, -2.30]	1996	-
Mendez	18.9	20.7	22	11.1	6.7	21	3.3%	7.80 [-1.31, 16.91]	1997	+
Engel	19	7.4	18	20.5	5.3	18	8.8%	-1.50 [-5.70, 2.70]	1997	
Rodrigo	8	7.3	16	10	2.7	14	9.5%	-2.00 [-5.85, 1.85]	1997	
Atkinson	10.5	13.1	197	12.2	23.2	193	9.7%	-1.70 [-5.45, 2.05]	1998	
Weimann	31.4	23.1	16	47.4	32.8	13	0.7%	-16.00 [-37.12, 5.12]	1998	←
Galban	18.2	12.6	89	16.6	12.9	89	9.7%	1.60 [-2.15, 5.35]	2000	- + •
Chuntrasakul	3.4	5.8	18	7.8	13.6	18	5.1%	-4.40 [-11.23, 2.43]	2003	
Dent	14.8	19.6	87	12	10.9	83	7.9%	2.80 [-1.94, 7.54]	2003	+
Pearce	11	9.5	15	4	3.6	16	7.3%	7.00 [1.88, 12.12]	2006	
Kuhls	27.8	17.82	22	22.4	17.35	22	2.7%	5.40 [-4.99, 15.79]	2007	,
Beale	16.6	14.8	27	13.4	11.5	28	4.9%	3.20 [-3.82, 10.22]	2008	
Total (95% CI)			594			579	100.0%	-0.44 [-2.31, 1.42]		+
Heterogeneity: Tau ² =	5.60: Chi ²	= 40.21.	df = 12	(P < 0.0	0001): P	² = 70%				
Test for overall effect:										-10 -5 0 5 10 Favours Arginine Favours Control

Figure 6b. ICU LOS (excluding Tsuei)

Figure 7a. Ventilated days

	Diets w	vith Argir	nine	0	Control			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
Gottschlich	9	4.5	17	10	2.5	14	10.1%	-1.00 [-3.51, 1.51]	1990	
Moore	1.9	0.9	51	5.3	3.1	47	13.9%	-3.40 [-4.32, -2.48]	1994	-
Kudsk	2.4	1.3	16	5.4	2	17	13.5%	-3.00 [-4.14, -1.86]	1996	
Mendez	16.5	19.4	22	9.3	6	21	2.4%	7.20 [-1.30, 15.70]	1997	→
Saffle	22	3	25	21	2	24	12.9%	1.00 [-0.42, 2.42]	1997	+
Engel	14.8	5.6	18	16	5.6	18	7.5%	-1.20 [-4.86, 2.46]	1997	
Weimann	21.4	10.8	16	27.8	14.6	13	1.9%	-6.40 [-15.94, 3.14]	1998	<
Atkinson	8	11.1	197	9.4	17.7	193	9.1%	-1.40 [-4.34, 1.54]	1998	
Galban	12.4	10.4	89	12.2	10.3	87	8.8%	0.20 [-2.86, 3.26]	2000	
Chuntrasakul	2.7	5.2	18	7.4	13.5	18	3.5%	-4.70 [-11.38, 1.98]	2003	<
Dent	14.3	22.4	87	10.8	12.8	83	4.7%	3.50 [-1.95, 8.95]	2003	
Tsuei	10	5	61	14	10	55	9.1%	-4.00 [-6.93, -1.07]	2005	
Kuhls	23.1	12.66	22	20.9	12.66	22	2.9%	2.20 [-5.28, 9.68]	2007	
Total (95% CI)			639			612	100.0%	-1.30 [-2.72, 0.12]		•
Heterogeneity: Tau ² =	3.57: Chi ²	= 44.55	df = 12	(P < 0.0)	0001): l ²	² = 73%				
Test for overall effect:										-10 -5 0 5 10 Favours Arginine Favours Control

Figure 7b. Ventilated days (excluding Tsuei)

	Diets w	vith Argin	ine	0	control			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Gottschlich	9	4.5	17	10	2.5	14	11.1%	-1.00 [-3.51, 1.51]	1990	
Moore	1.9	0.9	51	5.3	3.1	47	15.1%	-3.40 [-4.32, -2.48]	1994	-
Kudsk	2.4	1.3	16	5.4	2	17	14.7%	-3.00 [-4.14, -1.86]	1996	
Engel	14.8	5.6	18	16	5.6	18	8.3%	-1.20 [-4.86, 2.46]	1997	
Saffle	22	3	25	21	2	24	14.0%	1.00 [-0.42, 2.42]	1997	+
Mendez	16.5	19.4	22	9.3	6	21	2.6%	7.20 [-1.30, 15.70]	1997	→
Atkinson	8	11.1	197	9.4	17.7	193	10.0%	-1.40 [-4.34, 1.54]	1998	
Weimann	21.4	10.8	16	27.8	14.6	13	2.2%	-6.40 [-15.94, 3.14]	1998	←
Galban	12.4	10.4	89	12.2	10.3	87	9.7%	0.20 [-2.86, 3.26]	2000	
Dent	14.3	22.4	87	10.8	12.8	83	5.2%	3.50 [-1.95, 8.95]	2003	
Chuntrasakul	2.7	5.2	18	7.4	13.5	18	3.9%	-4.70 [-11.38, 1.98]	2003	<
Kuhls	23.1	12.66	22	20.9	12.66	22	3.3%	2.20 [-5.28, 9.68]	2007	
Total (95% CI)			578			557	100.0%	-1.02 [-2.53, 0.49]		•
Heterogeneity: Tau ² =	3.72; Chi ²	= 42.90.	df = 11	(P < 0.0	0001); l ²	² = 74%				
Test for overall effect:										-10 -5 0 5 10 Favours Arginine Favours Control